
RSLogix
Automation Interface

Reference Manual

June-2002

Contacting
 Rockwell Software

Technical Support Telephone—1-440-646-5800
Technical Support Fax—1-440-646-5801
World Wide Web—www.software.rockwell.com

Copyright Notice © 2001, 2002 Rockwell Software Inc., a Rockwell Automation company. All rights reserved
Printed in the United States of America
Portions copyrighted by Allen-Bradley Company, LLC, a Rockwell Automation company.
This manual and any accompanying Rockwell Software products are copyrighted by Rockwell
Software Inc. Any reproduction and/or distribution without prior written consent from Rockwell
Software Inc. is strictly prohibited. Please refer to the license agreement for details.

Trademark Notices The Rockwell Software logo, RSLogix 5, RSLogix 500, RSView32, RSView, and SoftLogix 5 are
trademarks of Rockwell Software Inc., a Rockwell Automation company.
DH+, MicroLogix, PLC, PLC-2, PLC-5, PLC-5/250, SLC, and SLC 500 are trademarks of the
Allen-Bradley Company, LLC, a Rockwell Automation company.
Microsoft, and Visual Basic are registered trademarks of the Microsoft Corporation.
ControlNet is a trademark of ControlNet International.
All other trademarks are the property of their respective holders and are hereby acknowledged.

Warranty This Rockwell Software product is warranted in accord with the product license. The product's
performance will be affected by system configuration, the application being performed, operator
control and other related factors.
The product's implementation may vary among users.
This manual is as up-to-date as possible at the time of printing; however, the accompanying
software may have changed since that time. Rockwell Software reserves the right to change any
information contained in this manual or the software at anytime without prior notice.
The instructions in this manual do not claim to cover all the details or variations in the equipment,
procedure, or process described, nor to provide directions for meeting every possible contingency
during installation, operation, or maintenance.

Contents
Chapter 1
Introduction to the automation interface 1

What is VBA and what does it do? ...1
Advantages ... 1
Uses ... 2

Finding your way around this book ..3
Automating the ladder logic editor... 3
Automating the documentation database editor .. 4

Supplemental information ..5
Example files...5
How to access VBA in RSLogix 5 and RSLogix 500 ...6
Create your VBA code ..6
Some quick programming tips ...6

Chapter 2
Application object .. 9

Properties ..10
Methods ...13
Events ..18
Summary example ..22

Form.. 22
Code .. 23

Chapter 3
LogixProject object .. 25

Properties ..26
Methods ...28
Events ..36
Summary example ..41

Form.. 41
Table of Contents • i

Code .. 41

Chapter 4
Processor object ...45

Properties .. 46
Methods .. 49
Events.. 51
Summary example.. 51

Form.. 52
Code .. 53

Chapter 5
ProgramFiles collection ..57

Properties .. 57
Methods .. 58
Events.. 60
Summary example.. 60

Form.. 61

Chapter 6
ProgramFile object..65

Properties .. 66
Methods .. 68
Events.. 68
Summary example.. 68

Form.. 69
Code .. 70

Chapter 7
DataFiles collection ..75

Properties .. 75
Methods .. 76
Events.. 79
Summary Example .. 79

Form.. 80
ii • RSLogix Automation Interface Reference Manual

Code .. 81

Chapter 8
DataFile object ... 85

Properties ..86
Methods ...88
Events ..88
Summary Example ...89

Form.. 90
Code .. 90

Chapter 9
LadderFile object.. 95

Properties ..96
Methods ...98
Events ..101
Summary example ..101

Form..102
Code ..103

Chapter 10
Rung object... 109

Properties ..110
Methods ...112
Events ..112
Summary example ..112

Form..113
Code ..114

Chapter 11
RevisionNotes object ... 119

Properties ..120
Methods ...120
Events ..121
Summary example ..121
Table of Contents • iii

Form.. 122
Code .. 122

Chapter 12
ReportOptions object ..127

Properties .. 128
Methods .. 132
Events.. 132
Summary example.. 133

Form.. 133
Code .. 133

Chapter 13
AddrSymRecords collection ...137

Properties .. 138
Methods .. 138
Events.. 144

Chapter 14
AddrSymRecord object ...145

Properties .. 146
Methods .. 147
Events.. 152

Chapter 15
RungCmntPageTitleRecords collection153

Properties .. 154
Methods .. 154
Events.. 164

Chapter 16
RungCmntPageTitleRecord object165

Properties .. 166
Methods .. 167
Events.. 169
iv • RSLogix Automation Interface Reference Manual

Chapter 17
PasswordPrivilegeConfig object .. 171

Properties ..172
Methods ...172
Events ..189

Appendix A
Object model diagrams .. 191

Introduction ..191
RSLogix 5 object model summary...192
RSLogix 500 object model summary ..195
RSLogix 500 object model summary, database utilities ...197

Appendix B
Type definitions and constants.. 199

RSLogix 5 and RSLogix 500 type definitions and constants...199
lgxDataFileTypeConstants (RSLogix 5) ...200
lgxDataFileTypeConstants (RSLogix 500) ...201
lgxKeyPositionConstants (RSLogix 5 and 500) ..202
lgxOnlineAction (RSLogix 5 and 500)..202
lgxProcessorTypeConstants (RSLogix 5) ...203
lgxProcessorTypeConstants (RSLogix 500)...204
lgxProcOnlineState (RSLogix 5) ..205
lgxProcOnlineState (RSLogix 500)..205
lgxProgramFileTypeConstants (RSLogix 5)...206
lgxProgramFileTypeConstants (RSLogix 500) ..206
lgxRungZoneTypes (RSLogix 5 and 500) ..206
lgxSaveAction (RSLogix 5 and 500)..206
lgxUpDownloadAction (RSLogix 5 and 500)..207
lgxWindowStateConstants (RSLogix 5 and 500)...207
lgxImportDBTypes (RSLogix 5 and 500) ..207
lgxBinary (RSLogix 5)..207
lgxChannel (RSLogix 5) ..207
lgxPrivilege (RSLogix 5) ..208
Table of Contents • v

lgxPrivilegeType (RSLogix 5) .. 208
lgxErrorTypes (RSLogix 5 and 500) ... 209

Appendix C
Handling errors..211

Appendix D
General differences in the RSLogix 5 and 500 automation
interfaces ..215

PasswordPrivilegeConfig ... 216
DataFile object .. 216
ProgramFile object.. 216
ReportOptions object...216
LogixProject object... 216
Processor object .. 217
Ladder object ... 217

Index..219
vi • RSLogix Automation Interface Reference Manual

What is VBA and what does it do?
Visual Basic® for Applications (VBA) is the edition of Visual Basic designed
specifically to provide rich development capabilities in an off-the-shelf
application. Microsoft® licenses VBA to application vendors such as Rockwell
Software, who integrate it into their products. This makes the familiar Visual
Basic development environment readily available for users to adopt, rapidly
extending their host application and integrating it with other VBA enabled
applications. In this sense, VBA is a “glue” or bridge between Component
Object Model (COM)-enabled software packages that allows them to
efficiently inter-operate with each other.

Advantages
Since VBA contains a full Visual Basic implementation, including a project
space, full language syntax, debugging, the forms package with ActiveX
Controls, and an Object browser, it can save you money over purchasing a
separate stand-alone copy of VB.
Solutions created with VBA execute quickly, since they run in the same
memory space as the host application and are tightly integrated with it. Such
quick execution allows developers to write code that responds to user actions,
such as opening, closing, or saving projects, or reaching database information
through code.
If you use products with embedded VBA the programming environment,
including language, interface, and so on, is truly standard no matter which of
the VBA licensed applications are involved. For example, the standard applies
whether you use Rockwell Software’s RSLogix 5™, RSLogix 500™, or
RSView32™ or even Microsoft® Excel or Word.

Chapter Introduction to the
automation interface
Introduction to the automation interface • 1

Object models also mean a more open environment. If there are many vendors
producing VBA-enabled applications, the walls of proprietary technology
barriers start to break down. Therefore, developers building multiple-
application software solutions can concentrate more on the functionality of the
application, instead of wasting time and resources trying to get the different
vendors packages to communicate or share data.
The VBA environment, shown below in the RSLogix5 software product, is the
same everywhere it appears.

Uses
VBA uses the objects, methods, properties and events of the RSLogix
automation interface to enable you to author scripts to automate tasks within the
RSLogix editor. You can automate many of the routine, repetitive tasks
involved in setting up RSLogix projects and customize your application. For
example using the RSLogix object model you can automate functionality from
within the Ladder Logic editor. Some uses might include:

generating RSLogix ladder logic template files from code libraries
automating your project creation tasks
building individualized interfaces that execute functionality within RSLogix
geared to specific groups within the factory environment, essentially
“wrapping” subsets of functionality in your own interface
generating event-driven HTML reports
2 • RSLogix Automation Interface Reference Manual

connecting your project to a web server so that it can be viewed over the
internet
tying applications together so developers can share application data and
functionality within a common environment

Finding your way around this book
You’ll see that the chapters in this book are organized by objects, starting with
those basic to general file creation and ladder logic editing. Read the tables that
follow for a chapter-by-chapter summary of the information in this book.

Automating the ladder logic editor
The following objects represent those functional areas that relate to file
creation and manipulation and to the graphical ladder logic that defines your
control program.

Objects: Purpose: Chpt:

Application The Application object represents the
RSLogix application. Use it to get other
objects and perform top-level operations.
(Make sure to read the important
programming advice on Page 10 when using
the Application object from within VBA.)

2

LogixProject The LogixProject object represents the
RSLogix project. Use it to access, define and
return various attributes of an existing
RSLogix project.

3

Processor The Processor object represents the PLC,
SoftLogix, SLC or MicroLogix processor.
Use it to automate online functionality such
as enabling and disabling forces, changing
properties or handling edits.

4

ProgramFiles The ProgramFiles collection represents all
the program files in the project. Use it to add
or remove program files from a collection.

5

ProgramFile The ProgramFile object represents base
functionality of a program file. Use it to
return file characteristics such as online and
protection status or use it to name the file.

6

Introduction to the automation interface • 3

Automating the documentation database editor
RSLogix 5 and RSLogix 500 (Professional) versions 5.50 and later provide full
database functionality with the following objects and collections.

DataFiles The DataFiles collection represents all the
data files in the project. Use it to add or
remove data files from a collection or read
raw data.

7

DataFile The DataFile object represents a data file in
the project or processor. Use it to return
defined attributes of the file.

8

LadderFile The LadderFile object represents a ladder file
in the project/processor. Use it to learn a
file’s attributes or manipulate rungs in the
ladder file.

9

Rung The Rung object represents a rung of ladder
logic. Use it to obtain information about the
rung.

10

RevisionNotes The RevisionNotes object contains the
revision notes for the project. Use it to get an
indexed revision note or return the number
of notes recorded for the project.

11

ReportOptions The ReportOptions object represents the
report settings associated with the project.
Use it to read, establish or change settings.

12

PasswordPrivilegeConfig The PasswordPrivilegeConfig object
represents the master and class privilege
administration unique to RSLogix5.

17

Objects: Purpose: Chapter:

AddrSymRecords The AddrSymRecords collection
represents all records in the address/
symbol editor list. Use it to add or
remove entries from the collection or
read raw data.

13

AddrSymRecord The AddrSymRecord object represents
data in the address/symbol editor list.
Use it to return or set a value in any
field.

14

Objects: Purpose: Chpt:
4 • RSLogix Automation Interface Reference Manual

Supplemental information
The appendices in this book provide this additional information.

Example files
Most chapters in this book include an example to help you understand how to
use the object model. Although written for the RSLogix 5 software product,
they may be easily adapted to RSLogix 500. For example type definitions may
vary between products, and those differences must be considered when
adapting code to the RSLogix 500 object model.
To assist you as you write your code, some samples are included on your
RSLogix product compact disk. Look for the VBA samples (.rsp project) on
the product CD to access these examples electronically.

RungCmntPageTitleRecords The RungCmntPageTitleRecords
collection represents all records in the
rung comment/page title editor list.
Use it to add or remove entries from
the collection or read raw data.

15

RungCmntPageTitleRecord The RungCmntPageTitleRecord object
represents data in the rung comment/
page title editor list. Use it to return or
set a value in any field.

16

Objects: Purpose: Chapter:

Title: Purpose: Appendixxxx:

Object Model Diagrams View complete object model diagrams
for RSLogix 5 and RSLogix 500.

A

Valid Type Definitions Descriptive lists detailing how to
construct valid terms of a type. Separate
lists are included for RSLogix 5 and
RSLogix 500.

B

Handling Errors A discussion and brief example of how
to programmatically handle exceptions
thrown by RSLogix.

C

General Differences in the
RSLogix 5 and 500
Automation Interfaces

Summary table of the differences in the
object models of RSLogix 5 and RSLogix
500

D

Introduction to the automation interface • 5

How to access VBA in RSLogix 5 and RSLogix 500
To access VBA from within an RSLogix application follow these simple steps:
1. Open the project in your RSLogix software to which you want to attach

your Visual Basic code.
2. Press [Alt]+[F11] to open the Microsoft Visual Basic project window.
3. Press [F2] to call the Object Browser. Make sure that the respective

RSLogix5 or RSLogix500 type library is listed in the type library index.
4. The Project Explorer window (pictured in the left pane in the illustration

on Page 2) displays forms, modules (files that hold the supporting code
for the application), classes (advanced modules), and more. When you
want to work with a particular part of the loaded application, double-click
the component in the Project Explorer window to bring that component
into focus.

Create your VBA code
Using the Visual Basic programming language, create subroutines in the code
window for the project. Create subroutines that work with the RSLogix 5 or
RSLogix 500 objects.
VBA subroutines run on a first-in, first-out basis. Each subroutine runs to
completion before the next subroutine is started. For that reason, do not create
subroutines that wait for user input before proceeding because if a user does
not respond, all processing of subroutines stops. For example, if you create a
dialog box that requires user input and no one responds to that dialog box, all
processing of subroutines stops until the user input is received (although your
RSLogix 5 or RSLogix 500 software continues to run normally).
If you want to turn off events in VBA, turn Design Mode ON. To do this click
Tools > Visual Basic > Design Mode.

Some quick programming tips
The key to productive development using the RSLogix automation interface is
a solid understanding of the methods, properties, and events that make
RSLogix programmable – in other words, you need to understand the RSLogix
object model.
Additionally, keep the following in mind while you code your customized
applications:
6 • RSLogix Automation Interface Reference Manual

1. Every method that accesses a COM object should have an On Error
Resume Next or On Error Goto statement at the beginning of the
method. Check for errors by testing the ErrObject often. Some of the
typical errors that may occur are:

Object not set (a previous call that returned an object was not
successful)
Method not supported on this object (maybe a spelling error, or you are
using the wrong object)

2. If you receive a message: “Client has disconnected from Server,” that
means that RSLogix has severed the link between the Visual Basic
operation and itself. You will have to re-establish the link.

3. When using VBA the topmost object is the LogixProject object. This
means that using the gApplication.Upload method exits the current
project and displays the uploaded project. Any code you may have written
stays with the exited project.

4. Use Visual Basic’s With statement to access an object’s properties to
improve performance. Consider this RSLogix 5 example:
Dim Proc As RSLogix5.Processor
Set Proc = myProject.Processor
If Not Proc Is Nothing Then
 With Proc
 Revision.Text = .Revision
 Series.Text = .Series
 Subrev.Text = .Subrevision
 End With
End If

5. Don’t forget to use the Set statement for assigning object references.
6. Watch out for the proper use of parentheses in function calls. Overuse of

parentheses may cause Visual Basic to evaluate an object, rather than
passing its reference as an argument.
Introduction to the automation interface • 7

8 • RSLogix Automation Interface Reference Manual

The Application object represents the RSLogix application. This is the topmost
object used to get other objects and perform top level operations. To use
Automation to control RSLogix from another application, use the
CreateObject(“RSLogix5.Application”) function to return an RSLogix 5
Application object or CreateObject(“RSLogix500.Application”) function to
return an RSLogix 500 Application object. The Application Object is a
creatable object.

Chapter Application object

Application
AutoSaveInterval
BackupCount
EnableAutoArrange
EnableAutoSave
EncodedRouteString
FullName
LibrarySearchPath
MaxDescriptionLineLength
MaxSymbolLength
Name
NumberOfDescriptionLines
Parent
PromptForRevNote
ProVersion
SourceSearchPath
VBAVersion
VBE
Version
Visible
WindowHandle
WindowState

FileNew
FileOpen
GetActiveProject
GetProcessorTypes
GoOffline
GoOnline
Quit
Upload

AfterUpload
BeforeFileNew
BeforeFileOpen
BeforeOffline
BeforeOnline
BeforeUpload
ClosingAllProjects
Quit

Properties Methods Events
Application object • 9

The following commented code example illustrates how you might use the
Application object to open an instance of RSLogix 5. The example further adds
error checking and displays a message if the RSLogix 5 application could not
be found.

Properties
In most cases properties are characteristics or attributes of an object. Using a
property returns information about the object or causes a quality of the object
to change. The following properties, listed alphabetically, affect the appearance
of the Application object by defining the way it should look or act.

Used without an object qualifier, this property returns an Application object
that represents the RSLogix application. Used with an object qualifier, this
property returns an Application object that represents the class of the specified
object (you can use this property with an OLE Automation object to return
that object's application).

Important When using the Application Object from within VBA:
The Create Object function does not apply.
To use Application from VBA you must access the
LogixProject.Application property.
When using VBA the topmost object is the LogixProject object.
This means that using any method that closes the current project
will cause the code you’ve written to remain with the closed
project. For example the gApplication.Upload method exits the
current project and displays the uploaded project. Any code you
may have written stays with the exited project.

'start Logix and store it in the gApplication object
Public Function StartLogix()
Set gApplication = CreateObject("RSLogix5.Application")
If gApplication Is Nothing Then
'Error checking, if gApplication is not set then display a message
 MsgBox "ERROR: Failed to create gApplication Object, Logix
 could not be started.", vbExclamation, "ERROR: 001"
End If
End Function

Application Application - Read Only
10 • RSLogix Automation Interface Reference Manual

Gets or sets the way that RSLogix handles the interval of the auto save (in
minutes). Use this for automatic file recovery when the project is not properly
closed.

Returns the current backup count.

Returns or sets the way that RSLogix handles the re-arranging of the windows
and results window when a verify or search all is performed.

Gets or sets the AutoSave feature in RSLogix. (1) indicates that the autosave
feature is enabled. To ensure that the autosave feature initiates properly always
save any new file immediately after creating it.

Internal use only.

 The full name of the application.

The path used for library files. This path should not exceed 256 characters.

Gets or sets the default length for descriptions used by the RSLogix database.

Gets or sets the default symbol length to be used by the database. By default,
when you use RSLogix as the database editor symbols can be up to 20
characters in length. You can, however set the symbol length to 10 or 15
characters.

AutoSaveInterval Long - Read/Write

BackupCount Long - Read/Write

EnableAutoArrange Boolean - Read/Write

EnableAutoSave Boolean - Read/Write

EncodedRouteString String - Read/Write

FullName String - Read Only

LibrarySearchPath String - Read/Write

MaxDescriptionLineLength Long - Read/Write

MaxSymbolLength Long - Read/Write
Application object • 11

The name of the application: “RSLogix 5” or “RSLogix 500.”

Gets or sets the default number of lines that RSLogix will accept for a
description in its database.

Returns the parent of the Application object. This represents the entire
RSLogix application.

Gets or sets the display of the revision note dialog when doing a “Save” or
“Save As” operation in RSLogix.

Returns if this version of RSLogix is the “Pro” version or the “Standard”
version.

Gets or sets the path used for the searching of source projects. This path is used
when going online, uploading, opening, and saving.

Returns the version of the VBA software currently running.

Returns the VBA IDE extensibility object. The integrated development
environment (IDE) includes many of the elements familiar to developers using
Visual Basic. An enhanced Visual Basic Editor (VBE), for example, now exists
outside the host application in a separate window. As a result, developers write
code in VBA and simultaneously review their programming in the host
application. The VBE also provide enhanced tools for tracking projects,
debugging, setting priorities and protecting project code.

Name String - Read Only

NumberOfDescriptionLines Long - Read/Write

Parent Application - Read Only

PromptForRevNote Boolean - Read/Write

ProVersion Boolean - Read Only

SourceSearchPath String - Read/Write

VBAVersion String - Read Only

VBE Object - Read Only
12 • RSLogix Automation Interface Reference Manual

Returns the RSLogix version number in a text format.

Gets or sets the visibility of the application. This property must be set if you
plan to use methods that show dialogs within the RSLogix application.

The window’s handle to the application’s main window.

Gets or sets the state of the main application window. These states are valid:
(0) lgxWindowStateNormal - The display window is in its normal state.
(1) lgxWindowStateMinimized - The display window has been minimized to
an icon.
(2) lgxWindowStateMaximized - The display window has been enlarged to
maximum size

Methods
Using a method causes something to happen to an object. In most cases
methods are actions. After having initialized the RSLogix application object,
use any of the following methods to identify the action that the object can
perform. Although written for the RSLogix 5 software product, the short
examples following each method may be easily adapted to RSLogix 500. For
example, type definitions may vary between products, and those differences
must be considered when adapting code to the RSLogix 500 object model.

Use this method to create a new RSLogix project.

Syntax
FileNew(ProcessorType as lgxProcessorTypeConstants, IgnorePrompts
as Boolean, SaveChanges as Boolean) as LogixProject

Arguments
ProcessorType - When this argument is set to lgxUnknownProc the processor
selection dialog is displayed, otherwise if a valid processor type is supplied no
dialog is displayed. A complete list of valid type definitions is in Appendix B.

Version String - Read Only

Visible Boolean - Read/Write

WindowHandle Long - Read Only

WindowState lgxWindowStateConstants - Read/Write

FileNew LogixProject
Application object • 13

IgnorePrompts - If set to True no user interface prompts are displayed to the user.
If False prompts are displayed.
SaveChanges - If set to True any changes to the current open document are
saved. If False changes to the current open document are not saved. This
parameter is ignored if IgnorePrompts is set to False.

Returns
If successful the newly created LogixProject object is returned otherwise
“Nothing” is returned.

Example
The following sample makes the call to RSLogix to make a new project using
the parameters specified.
Set gLogixProject = gApplication.FileNew(lgxPLC_580E, True, False)

Use this method to open an existing RSLogix project.

Syntax
FileOpen(PathName as String, ShowDialog as Boolean,UseAutoSave as
Boolean, AutoImportDB as Boolean) as LogixProject

Arguments
PathName - The string passed in this argument should be a fully qualified path
name.
ShowDialog - If no user interface is desired set this to False.
UseAutoSave - Set this flag True to use an auto-recovery file (if it is present)
when opening the file.
AutoImportDB - If True an archive file that was created with AI or APS will have
the database automatically imported.

Returns
If successful the newly created LogixProject object is returned otherwise
"Nothing" is returned.

Example
The following example makes the call to RSLogix to open the file named
“Temp” at the path indicated, and include an import of the Database.
Set gLogixProject = gApplication.FileOpen(“D:\RSI\Projects\Temp.rsp”,
False, False, True)

FileOpen LogixProject
14 • RSLogix Automation Interface Reference Manual

Use this method to get the current RSLogix Project.

Syntax
GetActiveProject()As LogixProject

Returns
Returns the current active project.

Example
The following example gets the active project from the application object.
Set gLogixProject = gApplication.GetActiveProject

Use this method to get the list of supported processor types.

Syntax
GetProcessorTypes(TypesArray as Variant, DescArray as Variant) as Long

Arguments
TypesArray - The integer values for each of the enumerated types.
DescArray - The string values of each of the enumerated types.

Returns
If successful the length of both arrays is returned.

Example
Length = gApplication.GetProcessorTypes(TypeNums, TypeStrings)

Use this method to go offline with the processor.

Syntax
GoOffline(IgnorePrompts as Boolean, SaveChanges as Boolean,
[OnlineFileAction as lgxUpDownloadAction,] [PathName as String])
as LogixProject

Arguments
IgnorePrompts - If TRUE no user interface prompts, questions or warnings are
displayed.

GetActiveProject LogixProject

GetProcessorTypes Long

GoOffline LogixProject
Application object • 15

SaveChanges - If True changes are saved. If False changes are not saved. This
parameter is ignored if IgnorePrompts is set to False.
OnlineFileAction - This is optional and will not affect the operation of the
method.
PathName - This is optional and will not affect the operation of the method.

Example
The following example takes a project offline after saving without prompting
the user.
Set gLogixProject = gApplication.GoOffline(True, True)

Use this method to go online with the processor.

Syntax
GoOnline(IgnorePrompts as Boolean, SaveChanges as Boolean,
[OnlineFileAction as lgxUpDownloadAction,] [PathName as String])
as LogixProject

Arguments
IgnorePrompts - If True no user interface prompts, questions or warnings are
displayed.
SaveChanges - If True changes are saved. If False changes are not saved. This
parameter is ignored if IgnorePrompts is set to False.
OnlineFileAction - [optional] This can be either (1) lgxUploadCreateNew,
(2) lgxUploadCurrent or (3)lgxUploadPath. This parameter is ignored if
IgnorePrompts is set to False.
PathName - [optional] The fully qualified path of the file, only used with
lgxUploadPath. This parameter is ignored if IgnorePrompts is set to False.

Example
The following example takes the current project online after saving without
prompting the user.
Set gLogixProject = gApplication.GoOnline(True, True)

GoOnline LogixProject
16 • RSLogix Automation Interface Reference Manual

Use this method to quit RSLogix.

Syntax
Quit(IgnorePrompts as Boolean, SaveChanges as Boolean)

Arguments
IgnorePrompts - If True no user interface prompts, questions or warnings are
displayed.
SaveChanges - If True changes are saved. If False changes are not saved. This
parameter is ignored if IgnorePrompts is set to False.

Example
The following example quits without saving and without prompting.
Call gApplication.Quit(True, False)

Use this method to upload the processor program into the current project.

Syntax
Upload(IgnorePrompts as Boolean, SaveChanges as Boolean,
UploadAction as lgxUpDownloadAction, OnlineAction as
lgxOnlineAction, [PathName as String]) As LogixProject

Arguments
IgnorePrompts - If True no user interface prompts, questions or warnings are
displayed.
SaveChanges - If True changes are saved. If False changes are not saved. This
parameter is ignored if IgnorePrompts is set to False.
UploadAction - The flag UploadAction, which is ignored if IgnorePrompts is
set to False can be one of the following indicating where the project it is
uploading to:

(1) lgxUploadCreateNew
(2) lgxUploadCurrent
(3) lgxUploadPath

OnlineAction - Places the processor in the selected mode of operation. This can
be either (1) lgxGoOnline or (2) lgxGoOffline. This parameter is ignored if
IgnorePrompts is set to False.

Quit

Upload LogixProject
Application object • 17

PathName - [optional] The fully qualified path for the file to be created or the
specified path and filename to go online with. This parameter is only used with
lgxUploadPath. This parameter is ignored if IgnorePrompts is set to False.

Example
The following example uploads the current project from the current processor
without prompting or saving the changes that were made and then going
offline.
Set gLogixProject = gApplication.Upload(True, False, lgxUploadCurrent,
lgxGoOffline)

Events
We recommend that you first set up an event class module to catch events.
When an instance of the class is created, you can apply these events to the
Application object. The following code example illustrates how to set up an
event class for an RSLogix5 application.
1. Create a new class module.
2. Then connect the Application object in your main code to the class.

Dim WithEvents gAppEvents As RSLogix5.Application

Public Sub ConnectToEvents(pApp As RSLogix5.Application)
 Set gAppEvents = pApp
End Sub

Syntax
AfterUpload()

Remarks
This event is raised when the upload has finished via automation or any way
from the application.

Example
The following example is simple debug code that outputs the message “Upload
Finished” to confirm the event was called.
Private Sub gAppEvents_AfterUpload()
 Debug.Print ("Upload Finished")
 'output a message to the user confirming the event was called
End Sub

AfterUpload
18 • RSLogix Automation Interface Reference Manual

Syntax
BeforeFileNew()As Boolean

Remarks
This event is raised when the FileNew action is invoked via automation or any
way from the application. If this event returns True the action is aborted. If
this event returns False the action continues.

Example
The following example is simple code to output the message “Cannot Create
New File” and abort the action of creating a new file.
Private Function gAppEvents_BeforeFileNew() As Boolean
 'Display message explaining that this operation is not permitted
 MsgBox ("Cannot Create New File")
 'Return a value of True to cancel the operation
 gAppEvents_BeforeFileNew = True
End Function

Syntax
BeforeFileOpen(FileName as String) As Boolean

Remarks
This event is raised when the FileOpen action is invoked via automation or any
way from the application. FileName is the fully qualified path of the file to be
opened. If this event returns True the action is aborted. If this event returns
False the action continues.

Example
The following example is simple code that outputs the message “Opening File”
once the event is called.
Private Function gAppEvents_BeforeFileOpen(ByVal Filename As String)
As Boolean
 'Display a message confirming that the event was called
 MsgBox ("Opening File")
 'Return a value of False to proceed with the operation
 gAppEvents_BeforeFileOpen = False
End Function

BeforeFileNew Boolean

BeforeFileOpen Boolean
Application object • 19

Syntax
BeforeOffline() As Boolean

Remarks
This event, raised before the action of going from online to offline, is invoked
via automation or any way from the application. If this event returns TRUE the
action is aborted, if FALSE is returned the action will continue.

Example
The following example is simple code to output the message “Going Offline”
when the BeforeOffline event is called.
Private Function gAppEvents_BeforeOffline() As Boolean
 'Display a message confirming that the event was called
 MsgBox ("Going Offline")
 'Return a value of False to proceed with the operation
 gAppEvents_BeforeOffline = False
End Function

Syntax
BeforeOnline() As Boolean

Remarks
This event is raised before the action of going from offline to online is invoked
via automation or any way from the application. If this event returns FALSE
the action is aborted, if TRUE is returned the action will continue.

Example
The following example is simple code to output the message “Cannot Go
Online” when the BeforeOnline event is called.
Private Function gAppEvents_BeforeOnline() As Boolean
 'Display a message explaining that this operation is not permitted
 MsgBox ("Cannot Go Online")
 'Return a value of True to cancel the operation
 gAppEvents_BeforeOnline = True
End Function

BeforeOffline Boolean

BeforeOnline Boolean
20 • RSLogix Automation Interface Reference Manual

Syntax
Before Upload() As Boolean

Remarks
This event is raised before the Upload action is invoked, via automation or any
way from the application. If this event returns TRUE the action is aborted, if
FALSE is returned the action will continue.

Example
The following example is simple code that outputs a message confirming that
the Upload is proceeding.
Private Function gAppEvents_BeforeUpload() As Boolean
 'Display a message confirming that the event was called
 MsgBox ("Uploading")
 'Return a value of False to proceed with the operation
 gAppEvents_BeforeUpload = False
End Function

Syntax
ClosingAllProjects()

Remarks
This is an application level event raised any time a project is closed.

Example
The following example is simple debug code that outputs the message
“RSLogix 5 closing all opened projects” to confirm the event was called.
Private Function gAppEvents_ClosingAllProjects()
 Debug.Print ("RSLogix 5 closing all opened projects")
 'output a message to the user confirming the event was called
End Function

Syntax
Quit()

Remarks
This event is raised when the application is ready to shutdown.

BeforeUpload Boolean

ClosingAllProjects

Quit
Application object • 21

Example
The following simple debug code outputs the message “RSLogix 5 Exiting” to
confirm the event was called.
Private Sub gAppEvents_Quit()
 Debug.Print ("RSLogix 5 Exiting")
End Sub

Summary example

The following example automates some top level actions that can be
accomplished using the Application object’s properties, methods and events in
the RSLogix automation interface. Comments within the code are preceded by
an apostrophe ('). You’ll see that although the example is specific to RSLogix
5 software, it is generic enough to adapt to RSLogix 500 with only minor form
and comment alterations.

Form
In subsequent chapters throughout this manual the following basic form will
be added to as the complete functionality of the automation interface is
introduced object by object.

Important This book assumes that you have the basic knowledge required to
work with forms and controls in Visual Basic.
22 • RSLogix Automation Interface Reference Manual

Code
'-----------------------------------
' Global variables
'-----------------------------------

Dim gApplication As RSLogix5.Application 'Application object
Dim gProject As RSLogix5.LogixProject 'LogixProject object

'-----------------------------------
' Application Object
'-----------------------------------

Private Sub Command1_Click()

 ' Set the application object to the object returned by CreateObject.
 ' CreateObject is simply a method provided by Microsoft that creates
 ' a new registered COM application instance. In this case we start
 ' RSLogix 5 by using the "RSLogix5.Application" string.
 Set gApplication = CreateObject("RSLogix5.Application")
 ' At this point, if the CreateObject method functioned properly, the
 ' gApplication object is now a direct reference to the RSLogix5
 ' Object Model. Any properties or methods that we invoke on this
 ' object will immediately take effect in RSLogix.

 ' Immediately set the visible property of the application to 'True'
 gApplication.Visible = True

 ' Assign the AutoSaveInterval value to 3 minutes
 gApplication.AutoSaveInterval = 3

 ' Assign WindowState prop. to lgxWindowStateMaximized enumeration
 gApplication.WindowState = lgxWindowStateMaximized

End Sub

Private Sub Command2_Click()
 ' Quit the application ignoring prompts and not saving changes.
 gApplication.Quit True, False
 ' Eliminate the reference to the application object
 Set gApplication = Nothing
End Sub

Private Sub Command3_Click()
On Error GoTo errorHandler
 ' Upload a project from the processor using the upload method of the
 ' application object while ignoring prompts, NOT saving the previous
 ' file, creating new file from the upload (using lgxUploadCreateNew
 ' enum (see the objectbrowser for more enumerations)), and go online
 ' (using the lgxGoOnline enum).
 ' Set the returned object reference to the gProject object.
Application object • 23

 Set gProject = gApplication.Upload(True, False, lgxUploadCreateNew,
lgxGoOnline)
Exit Sub

errorHandler:
 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
End Sub

Private Sub Command4_Click()
 ' Get the currently open project in the application.
 Set gProject = gApplication.GetActiveProject
End Sub
24 • RSLogix Automation Interface Reference Manual

The LogixProject object represents the RSLogix project. The LogixProject
Object can only be obtained from the Application Object via any one of the
following methods:

FileNew
FileOpen
GetActiveProject
GoOffline
GoOnline
Upload

You cannot create a new instance of a LogixProject object with the
CreateObject function.

Chapter LogixProject object

AddrSymRecords
Application
DataFiles
FullName
Modified
Name
Online
Parent
PasswordPrivilegeCfg (5 only)
Processor
ProgramFiles
ReportOptions
Revision
RevisionNotes
RungCmntPageTitleRecords

Close
DisplayReportOptions
Download
GotoDataFileElement
GotoProgramFile
ImportDataBase
PrintReport
Save
SaveAs
ShowControllerProperties
ShowDataFile
ShowDataTablesProperties
ShowProgramFile
ShowProgramFilesProperties

VerifyProject

VerifyProgramFile

AfterDownload
AfterOpen
AfterSave
BeforeClose
BeforeDownload
BeforeSave
BeforeSaveAs
FinishedReport
FinishedVerify
OnlineOfflineFileClosing

Properties Methods Events
LogixProject object • 25

The following commented code example illustrates how you might open a
project after first determining whether a project is already opened. The example
first closes any opened project, waits for the project to close, and then opens
the project named in the Filename parameter.

Properties
In most cases properties are characteristics or attributes of an object. Using a
property returns information about the object or causes a quality of the object
to change. The following properties define the LogixProject object

Returns the AddrSymRecords collection.

Used without an object qualifier, this property returns an Application object
that represents the RSLogix application.

'This function opens a file for use in RSLogix5, it stores the
'LogixProject object in gLogixProject
Public Function OpenAFile(Filename As String)
If Not gLogixProject Is Nothing Then
'if a file is open close it
 gLogixProject.Close True, True
 'call RSLogix to close project
 Form1.Timer2.Enabled = True
 'wait for a full second, this is so the project has time to close
 While (Form1.Timer2.Enabled = True)
 DoEvents
 'Timer will disable itself after one second
 Wend
 Set gLogixProject = Nothing
 'clear the gLogixProject object
End If
Set gLogixProject = gApplication.FileOpen(Filename, False, False,True)
'make call to RSLogix to open the File passed into this function
If gLogixProject Is Nothing Then
'if the above call failed then display a message and exit
 MsgBox "Logix failed to create the project!", vbExclamation, "ERROR"
 Exit Function
End If
End Function

AddrSymRecords AddrSymRecord - Read Only

Application Application - Read Only
26 • RSLogix Automation Interface Reference Manual

Returns the data files collection object/interface.

The full name of the project including the fully qualified path.

Indicates if the project has been modified in any way.

The name of the project.

Returns whether or not RSLogix is online with the processor.

Returns the object representing the entire RSLogix Application.

Returns the Password/Privilege configuration for the processor.

Returns the processor object.

Returns the program files collection object.

Returns the report options object/interface.

Returns the current revision of the project.

DataFiles DataFiles - Read Only

FullName String - Read Only

Modified Boolean - Read Only

Name String - Read Only

Online Boolean - Read Only

Parent Application - Read Only

PasswordPrivilegeCfg PasswordPrivilegeCfg - Read Only

Processor Processor - Read Only

ProgramFiles ProgramFiles - Read Only

ReportOptions ReportOptions - Read Only

Revision Integer - Read Only

(5 only)
LogixProject object • 27

Returns the RevisionNotes collection.

Returns the RungCmntPageTitleRecords collection.

Methods
Using a method causes something to happen to an object. In most cases
methods are actions. Use any of the following methods to identify an action for
the LogixProject object to perform. Although written for the RSLogix 5
software product, the short examples following each method may be easily
adapted to RSLogix 500. For example, type definitions may vary between
products, and those differences must be considered when adapting code to the
RSLogix 500 object model.

Use this method to close the RSLogix project.

Syntax
Close(IgnorePrompts as Boolean, AcceptDefaultActions as Boolean)

Arguments
IgnorePrompts - When True no user interface confirmations will be displayed.
If FALSE prompts are displayed.
AcceptDefaultActions - If True the default saving action that had been selected
for the project is followed. This parameter is ignored if IgnorePrompts is set to
False.

Example
The following code snippet makes the call to RSLogix to close the project after
first saving but without user prompts.
Call gLogixProject.Close(True, True)

Use this method to display the Report Options dialog.

Syntax
DisplayReportOptions()

RevisionNotes RevisionNotes - Read Only

RungCmntPageTitleRecords RungCmntPageTitleRecords - Read Only

Close

DisplayReportOptions
28 • RSLogix Automation Interface Reference Manual

Returns
If successful the Report Options dialog is displayed.

Example
The following code snippet displays the Report Options dialog for the user.
gLogixProject.DisplayReportOptions

Use this method to download the current project into the processor.

Syntax
Download(IgnorePrompts as Boolean, OnlineAction as lgxOnlineAction,
ProcessorMode as lgxProcOnlineState) As Boolean

Arguments
IgnorePrompts - When True no user interface prompts, questions or
warnings will be displayed. If False prompts are displayed.
OnlineAction - This can be either (1) lgxGoOnline or (2) lgxGoOffline,
indicating what to do after a successful download. This parameter is ignored if
IgnorePrompts is set to False.
ProcessorMode - This can be either (6) lgxRemoteProg, (7) lgxRemoteTest or
(8) lgxRemoteRun and only applies if lgxOnlineAction = lgxGoOnline. This
parameter is ignored if IgnorePrompts is set to False.

Remarks
To download the processor must be in PROGRAM mode and the key switch
must be in either REM or PROG. You must also be offline with RSLogix.

Returns
If successful a value of True is returned; if not successful False is returned.

Example
The following code snippet calls RSLogix to download the project without
prompting; then go online and place the processor in Remote Run mode.
Result = gLogixProject.Download(True, lgxGoOnline, lgxREMOTERUN)

Use this method to display the indicated data file element.

Syntax
GotoDataFileElement(Address as String) As Boolean

Download Boolean

GotoDataFileElement Boolean
LogixProject object • 29

Arguments
Address - The data file address you want displayed.

Returns
If successful a value of True is returned, and the selected data file is displayed
with the selected address/element highlighted. If unsuccessful False is
returned.

Example
The following code snippet displays the data file after having been passed the
address via string input from a text box on a form.
Result = gLogixProject.GotoDataFileElement(Text1.Text)

Use this method to display the indicated program file.

Syntax
GotoProgramFile(FileNumber as Long, RungNumber as Long,
Ins as Long, Op as Long) as Boolean

Arguments
FileNumber - The number of the desired file.
RungNumber - The number of the desired rung.
Ins - The instruction you want to display.
Op - The operand index for the desired instruction.

Returns
If successful a value of True is returned, the selected program file displays and
the instruction operand selected is highlighted. If unsuccessful False is
returned.

Example
The following example goes to the program file 2 and highlights rung 1. By
indicating a 0 for the instruction number in the third argument, the cursor
assumes position before the first instruction on the rung.
Call gLogixProject.GotoProgramFile(2, 1, 0, 1)

GotoProgramFile Boolean
30 • RSLogix Automation Interface Reference Manual

Use this method to import the RSLogix 5 or RSLogix 500 documentation
database information from a CSV (comma separated variable) or EAS
(Exported symbol/description file) text file. This will overwrite existing
database information. Currently only Address Symbol database imports are
supported.

Syntax
ImportDataBase(PathName as String, ShowDialog as Boolean,
[DBImportType as lgxImportDBTypes]) as Boolean

Arguments
PathName - The fully qualified path for the text file to import.
ShowDialog - Enter True to show the Import Database dialog. If you choose to
show this dialog, then any pathname provided in the PathName parameter is
ignored.
DBImportType - Determines which documentation database is being imported.

Returns
True is returned if the import was successful. False is returned if the import was
unsuccessful.

Example
This code snippet displays the Import Database dialog allowing you to proceed
to select database files from the dialog.
Call gLogixProject.ImportDataBase("C:\Project\AddrSym.csv", True)

Use this method to print a report.

Syntax
PrintReport(IgnorePrompts as Boolean) As Boolean

Arguments
IgnorePrompts - If True no prompts, questions or warnings are displayed.

Returns
If successful a value of True is returned and a report is printed. If unsuccessful
printing is cancelled and a value of False is returned.

ImportDataBase Boolean

PrintReport Boolean
LogixProject object • 31

Example
The following example makes a call to RSLogix to print the report.
Call gLogixProject.PrintReport(True)

Use this method to save a project.

Syntax
Save(IgnorePrompts as Boolean, AcceptDefaultActions as Boolean) As Boolean

Arguments
IgnorePrompts - If True no user interface prompts, questions or warnings
are displayed.
AcceptDefaultActions - If True the default action proceeds. This parameter is
ignored if IgnorePrompts is set to False.

Returns
If successful a value of True is returned and the LogixProject is saved as
directed by the arguments in the call. If unsuccessful False is returned.

Example
The following code snippet is the call to save a project.
Call gLogixProject.Save(True, True)

Use this method to save the project using a new name.

Syntax
SaveAs(IgnorePrompts as Boolean, AcceptDefaultActions as Boolean,
DBAction as lgxSaveAction, PathName as String) As Boolean

Arguments
IgnorePrompts - If TRUE no user interface prompts, questions or warnings
are displayed.
AcceptDefaultActions - If True the default action proceeds. This parameter is
ignored if IgnorePrompts is set to False.
DBAction - The lgxDBAction can be one of the following types:

(0) lgxNoAction
(1) lgxSaveNativeExternalDB
(2) lgxSaveAIExternalDB
(3) lgxSaveAPSExternalDB

Save Boolean

SaveAs Boolean
32 • RSLogix Automation Interface Reference Manual

These choices indicate the format that the database files will be exported to.
This parameter is ignored if IgnorePrompts is set to False.
PathName - This is the fully qualified path/name of the new file/location to
save the file. This parameter is ignored if IgnorePrompts is set to False.

Returns
If successful a value of True is returned and the LogixProject is saved as
directed by the arguments in the call. If unsuccessful False is returned.

Example
The following code snippet saves the current project with the filename
(Filename.rsp) without prompting.
Call gLogixProject.SaveAs(True, True, lgxNoAction,
"C:\FolderX\Filename.rsp")

Use this method to display the controller properties dialog.

Syntax
ShowControllerProperties()

Returns
When successful this displays the controller properties dialog.

Example
The following code snippet displays the controller properties dialog.
Call gLogixProject.ShowControllerProperties()

Use this method to display a specific data file. The application’s visible property
must be set for this to work properly.

Syntax
ShowDataFile(File as Long) As Boolean

Returns
When successful a value of True is returned and he indicated data file is
displayed. If unsuccessful False is returned.

Example
The following code snippet displays counter file (C5) for the current project.
Result = gLogixProject.ShowDataFile(5)

ShowControllerProperties

ShowDataFile Boolean
LogixProject object • 33

Use this method to display the data files’ properties dialog.

Syntax
ShowDataTablesProperties()

Returns
When successful this displays the data files’ properties dialog. It may be useful
if you want to change the protection options placed on a particular data table
file or change the file size.

Example
The following code snippet displays the properties dialog for data files.
Call gLogixProject.ShowDataTablesProperties()

Use this method to display a program file. The application’s visible property
must be set for this to work properly.

Syntax
ShowProgramFile(File as Long) As Boolean

Returns
When successful a value of True is returned and the indicated program file is
displayed. If unsuccessful False is returned.

Example
The following code snippet displays program file #3 in the current project.
Result = gLogixProject.ShowProgramFile(3)

Use this method to display the program file’s property dialog.
Syntax
ShowProgramFilesProperties()

Returns
When successful this displays the program files’ properties dialog.
Example
The following code snippet displays the properties dialog for program files.
Call gLogixProject.ShowProgramFileProperties()

ShowDataTablesProperties

ShowProgramFile Boolean

ShowProgramFilesProperties
34 • RSLogix Automation Interface Reference Manual

Use this method to verify the RSLogix project and display the results.

Syntax
VerifyProject(DisplayProgress as Boolean) As Boolean

Arguments
Display Progress - If set to TRUE a dialog box displays the progress of the verify.
If set to FALSE no user interface will be presented to the user indicating the
progress of the verify operation. A results window will be shown at the end of
the verify operation however.

Returns
When successful a value of True is returned and the project is verified and the
results of the verify operation are displayed. If unsuccessful False is returned.

Example
The following code snippet calls for a project verification without displaying a
dialog box to show how the verify is proceeding.
Result = gLogixProject.VerifyProject (False)

Use this method to verify a designated program file.

Syntax
VerifyProgramFile(FileNumber as Long) As Boolean

Arguments
FileNumber - The number of the program file that is to be verified.

Returns
If the ladder file is verified without errors, True is returned, otherwise False is
returned.

Example
The following code snippet makes the call to RSLogix to verify program file
#2.
Result As Boolean
Result = gLogixProject.VerifyProgramFile(2)

VerifyProject Boolean

VerifyProgramFile Boolean
LogixProject object • 35

Events
We recommend that you first set up an event class module to catch events.
When an instance of the class is created, you can apply these events to the
LogixProject object.
The following code example illustrates how to set up an event class.
1. Create a new class module.
2. Next connect the LogixProject object in your main code to the class.

Dim WithEvents gProjEvents As RSLogix5.LogixProject

Public Sub ConnectToEvents(pProj As RSLogix5.LogixProject)
 Set gProjEvents = pProj
End Sub

Syntax
AfterDownload()

Remarks
This event is raised at the end of the download action. This is just a notification
event.

Example
The following example is simple debug code that outputs the message
“Download Complete” to confirm the event was called.
Private Sub gProjEvents_AfterDownload()
 Debug.Print ("Download Complete")
 'output a message to the user confirming the event was called
End Sub

Syntax
AfterOpen()

Remarks
This event is fired immediately after a project is opened and is used in VBA to
perform initialization when a project is opened. It cannot be used in VB,
however.

AfterDownload

AfterOpen
36 • RSLogix Automation Interface Reference Manual

Example
The following example is simple debug code that outputs the message “File
Opened” to confirm the event was called.
Private Sub gProjEvents_AfterOpen()
 Debug.Print ("File Opened")
 'output a message to the user confirming the event was called
End Sub

Syntax
AfterSave()

Remarks
This event is raised at the end of the save action. This is just a notification
event.

Example
The following example is simple debug code that outputs the message “File
Saved” to confirm the event was called.
Private Sub gProjEvents_AfterSave()
 Debug.Print ("File Saved")
 'output a message to the user confirming the event was called
End Sub

Syntax
BeforeClose() As Boolean

Remarks
This event is raised at the start of the close action. If the action is to be aborted
return True otherwise return False to continue with the action.

AfterSave

BeforeClose Boolean
LogixProject object • 37

Example
The following example is simple code that outputs the message “Closing
Project” once the event is called and then proceeds with the operation.
Private Function gProjEvents_BeforeClose() As Boolean
 'Display a message confirming that the event was called
 MsgBox ("Closing Project")
 'Return a value of False to proceed with the operation
 gProjEvents_BeforeClose = False
End Function

Syntax
BeforeDownload() As Boolean

Remarks
This event is raised at the start of the download action. If the action is to be
aborted return True otherwise return False to continue with the action.

Example
The following example displays a message box advising of a problem with
download.
Private Function gProjEvents_BeforeDownload() As Boolean
 'Display a message explaining that this operation is not permitted
 MsgBox ("Cannot Download")
 'Return a value of True to cancel the operation
 gProjEvents_BeforeDownload = True
End Function

Syntax
BeforeSave() As Boolean

Remarks
This event is raised at the start of the “Save” action. If the action is to be
aborted return True, otherwise return False to continue with the action.

Example
The following example is simple code that outputs the message “Saving
Project” to confirm the event was called.
Private Function gProjEvents_BeforeSave() As Boolean
 'Display a message confirming that the event was called
 MsgBox ("Saving Project")
 'Return a value of False to proceed with the operation

BeforeDownload Boolean

BeforeSave Boolean
38 • RSLogix Automation Interface Reference Manual

 gProjEvents_BeforeSave = False
End Function

Syntax
BeforeSaveAs() As Boolean

Remarks
This event is raised at the start of the “Save As” action. If the action is to be
aborted return True, otherwise return False to continue with the action.

Example
The following example is simple code that outputs a message indicating
inability to save a file under another name.
Private Function gProjEvents_BeforeSaveAs() As Boolean
 'Display a message explaining that this operation is not permitted
 MsgBox ("Cannot Save As Different File Name")
 'Return a value of True to cancel the operation
 gProjEvents_BeforeSaveAs = True
End Function

Syntax
FinishedReport()

Remarks
This event is raised at the end of the print report action. This is just a
notification event.

Example
The following example is simple debug code that outputs the message
“Finished Printing Report” to confirm the event was called.
Private Sub gProjEvents_FinishedReport()
 Debug.Print ("Finished Printing Report")
 'output a message to the user confirming the event was called
End Sub

BeforeSaveAs Boolean

FinishedReport
LogixProject object • 39

Syntax
FinishedVerify()

Remarks
This event is raised at the end of the verify action. This is just a notification
event.

Example
The following example is simple debug code that outputs the message “Verify
Finished” to confirm the event was called.
Private Sub gProjEvents_FinishedVerify()
 Debug.Print ("Verify Finished")
 'output a message to the user confirming the event was called
End Sub

Syntax
OnlineOfflineFileClosing()

Remarks
This event is raised when the current open project is being closed when going
from “online to offline” or “offline to online.”

Example
The following example is simple debug code that outputs the message “Closing
File” to confirm the event was called.
Private Sub gProjEvents_OnlineOfflineFileClosing()
 Debug.Print ("Closing File")
 'output a message to the user confirming the event was called
End Sub

FinishedVerify

OnlineOfflineFileClosing
40 • RSLogix Automation Interface Reference Manual

Summary example

The following example automates functionality within RSLogix 5 with the
automation interface by incorporating properties, methods and events from
both the Application and LogixProject objects. Comments within the code are
preceded by an apostrophe ('). You’ll see that although the example is specific
to RSLogix 5 software, it is generic enough to adapt to RSLogix 500 with only
minor form and comment alterations.

Form
The following form builds on the form first presented in Chapter 2. Subsequent
chapters in this book will continue to build on this form.

Code
'-----------------------------------
' Global variables
'-----------------------------------

Dim gApplication As RSLogix5.Application 'Application object
Dim gProject As RSLogix5.LogixProject 'LogixProject object

Important This book assumes that you have the basic knowledge required to
work with forms and controls in Visual Basic.
LogixProject object • 41

'-----------------------------------
' Application
'-----------------------------------

Private Sub Command1_Click()

 ' Set application object to the object returned from CreateObject.
 ' CreateObject is simply a method provided by Microsoft that creates
 ' a new registered COM application instance. In this case we start
 ' RSLogix 5 by using the "RSLogix5.Application" string.
 Set gApplication = CreateObject("RSLogix5.Application")
 ' At this point, if the CreateObject method functioned properly, the
 ' gApplication object is now a direct reference to the RSLogix5
 ' Object Model. Any properties or methods that we invoke on this
 ' object will immediately take effect in RSLogix.

 ' Immediately set the visible property of the application to 'True'
 gApplication.Visible = True

 ' Assign the AutoSaveInterval value to 3 minutes
 gApplication.AutoSaveInterval = 3

 ' Assign WindowState prop to lgxWindowStateMaximized enumeration
 gApplication.WindowState = lgxWindowStateMaximized

End Sub

Private Sub Command2_Click()
 ' Quit the application ignoring prompts and not saving changes.
 gApplication.Quit True, False
 ' Eliminate the reference to the application object
 Set gApplication = Nothing
End Sub

Private Sub Command3_Click()
On Error GoTo errorHandler
 ' Upload a project from the processor using the upload method of the
 ' application object while ignoring prompts, NOT saving the previous
 ' file, creating new file from the upload (using lgxUploadCreateNew
 ' enum (see the objectbrowser for more enumerations)), and go online
 ' (using the lgxGoOnline enum).
 ' Set the returned object reference to the gProject object.
 Set gProject = gApplication.Upload(True, False, lgxUploadCreateNew,
lgxGoOnline)
Exit Sub

errorHandler:
 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
42 • RSLogix Automation Interface Reference Manual

End Sub

Private Sub Command4_Click()
 ' Get the currently open project in the application.
 Set gProject = gApplication.GetActiveProject
End Sub

'-------------------------------
' LogixProject
'-------------------------------

Private Sub Command5_Click()
 Dim returnValue As Boolean

 ' Save the currently open project, assign the return value to a
 ' variable and display that value in a message box.
 returnValue = gProject.Save(True, True)
 MsgBox "Returned: " & returnValue

End Sub

Private Sub Command6_Click()
On Error GoTo errorHandler
 Dim returnValue As Boolean

 ' Download the project to the current processor. This method call is
 ' ignoring all prompts, going online (using the lgxGoOnline enum),
 ' setting the processor to remote program mode (using the
 ' lgxREMOTEPROG enum) and displaying the return value in a message
 ' box
 returnValue = gProject.Download(True, lgxGoOnline, lgxREMOTEPROG)
 MsgBox "Returned: " & returnValue
Exit Sub

errorHandler:
 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
End Sub

Private Sub Text1_Click()
 ' Display the current name of the project in a text box.
 Text1.Text = gProject.FullName
 Text2.Text = gProject.Name
End Sub
LogixProject object • 43

44 • RSLogix Automation Interface Reference Manual

The Processor object represents the processor being used in the current
project. The Processor object is obtained from the LogixProject object via the
Processor property. You cannot create a new instance of the Processor object
with the CreateObject function.

Chapter Processor object

Application
CanAssembleEdits
CanCancelEdits
CanTestEdits
CanUntestEdits
DefaultDriver
CurrentPLC5MemSize - (RSLogix 5 only)
DestNodeOctal
DriverName
DriverTimeout
EditsActive
EditsPresent
Emulator
EncodedRouteString
Faulted
HasPasswordPrivileges - (RSLogix 5 only)
KeySwitchPosition
Name
Node
NumberOfMemSizeChoices - (RSLogix 5 only)
Online
OnlineChangesMade
ProcessorMode
ProgramID - (RSLogix 500 only)
Revision - (RSLogix 5 only)
Series - (RSLogix 5 only)
SubRevision - (RSLogix 5 only)
Type

ClearAllForces
DisableForces
EnableForces
GetPLC5MemSizeChoiceByIndex - (RSLogix 5 only)
SetPLC5MemSize - (RSLogix 5 only)

-None-

Properties Methods

Events
Processor object • 45

The following commented code example illustrates how you might establish
which processor is being used in the current opened project. If no data is
available, then an error message will be returned.

Properties
In most cases properties are characteristics or attributes of an object. Using a
property returns information about the object or causes a quality of the object
to change. The following properties query the processor object for the stated
information.

This property returns an Application object that represents the RSLogix 5 or
RSLogix 500 application.

Queries and returns whether or not edits can be assembled in the processor
(incorporated into the ladder program while editing the ladder logic program
online).

Queries and returns whether or not edits can be cancelled in the processor.

Queries and returns whether or not edits can be tested in the processor
(examine how the program operates with the edited rung).

Queries and returns whether or not edits can be untested in the processor
(return the operation of the program to the way it functioned before the edited
rung was tested).

'get the processor object
Set gProc = gLogixProject.Processor
If gProc Is Nothing Then
'if that failed then exit
 MsgBox "Failed to get Processor Data from the LogixProject Object!",
vbExclamation, "ERROR 005"
 Exit Function
End If

Application Application - Read Only

CanAssembleEdits Boolean - Read Only

CanCancelEdits Boolean - Read Only

CanTestEdits Boolean - Read Only

CanUntestEdits Boolean - Read Only
46 • RSLogix Automation Interface Reference Manual

This property returns the returns the value of the current processor memory
size in bytes.

Queries and returns whether or not the default driver is being used in the
current project.

Returns whether or not the destination node is “expressed in” or “expected to
be in” octal.

Returns the name of the communications driver currently being used to
communicate with the processor.

Returns or sets the timeout expressed in seconds for the communication driver.

Queries and returns whether or not edits are active in the processor.

Queries and returns whether or not edits are present in the processor.

Queries and returns whether or not the emulator is being used instead of a real
processor.

This property is for internal use only.

Queries and returns whether or not the processor is faulted.

CurrentPLC5MemSize Long - Read Only

DefaultDriver Boolean - Read Only

DestNodeOctal Boolean - Read Only

DriverName String - Read Only

DriverTimeout Integer - Read/Write

EditsActive Boolean - Read Only

EditsPresent Boolean - Read Only

Emulator Boolean - Read Only

EncodedRouteString String - Read/Write

Faulted Boolean - Read Only

(5 only)
Processor object • 47

.

This property returns a Boolean which will be true if the processor type
supports password privileges.

Returns the current position of the key switch on the processor. Possible
returned values are listed below and described in Appendix B. .

Returns or sets the name of the processor.

Returns or sets the processor node number in decimal.

Returns the number of memsize choices that the current processor type has. If
you look at the controller properties of a project, you will see where you can
select the platform, processor, and series, and there is a list box for selecting a
memory size. This property will tell you how many choices you have to select
from. Most times it is only one.

Returns whether or not the processor is online.

Queries and returns whether or not any online changes have been made.

Returns or sets the current mode of the processor. This can be set to one of the
following when examining this property:

(6) lgxRemoteProg
(7) lgxRemoteTest
(8) lgxRemoteRun

HasPasswordPrivileges Boolean - Read Only

KeySwitchPosition lgxKeyPositionConstants - Read Only

(0) lgxUnknownKey (2) lgxKeyProgram
(1) lgxKeyRemote (3) lgxKeyRun

Name String - Read/Write

Node Integer - Read/Write

NumberOfMemSizeChoices Integer - Read/Write

Online Boolean - Read Only

OnlineChangesMade Boolean - Read Only

ProcessorMode lgxProcOnlineState - Read/Write

 (5 only)

(5 only)
48 • RSLogix Automation Interface Reference Manual

See Appendix B for a complete list of type definitions for lgxProcOnlineState.

Returns the 4-byte error check (CRC) of the program.

 Sets or returns the revision number of the processor

Sets or returns the series of the processor

Sets or returns the subrevision of the processor.

Returns the type of the processor as a lgxProcessorTypeConstant.

Methods
Using a method causes something to happen to an object. In most cases
methods are actions. Use any of the following methods to identify an action for
the Processor object to perform. Although written for the RSLogix 5 software
product, the short examples following each method may be easily adapted to
RSLogix 500. For example, type definitions may vary between products, and
those differences must be considered when adapting code to the RSLogix 500
object model.

Use this method to remove all forces from the input and output force tables.

Syntax
ClearAllForces()

Example
The following code snippet clears all forces in the current processor.
Call gProc.ClearAllForces()

ProgramID Integer - Read Only

Revision Integer - Read/Write

Series Integer - Read/Write

Subrevision Integer - Read/Write

Type lgxProcessorTypeConstant - Read Only

ClearAllForces

 (500 only)

 (5 only)

 (5 only)

 (5 only)
Processor object • 49

Use this method to disable all forced I/O bits.

Syntax
DisableForces()

Example
The following code snippet disables all forces in the current processor.
Call gProc.DisableForces()

Use this method to enable all forced I/O bits. Enabling the input force table
affects the input force table, input data file, and also the program logic.
Enabling the output force table only affects the output circuit; it does not affect
the output data file or program logic. Use caution when enabling forces.

Syntax
EnableForces()

Example
The following code snippet enables all forces in the current processor.
Call gProc.EnableForces()

Use this method to get any of the legal memory size choices for the currently
selected processor.

Syntax
GetPLC5MemSizeChoiceByIndex(Index as Short) as Long

Arguments
Index - If property NumberOfMemSizeChoices returns 2, then Index can equal
either 1 or 2 in order to return the desired Memory size. Most times
NumberOfMemSizeChoices will return 1, so Index will be 1. You can use an
integer for this parameter in Visual Basic.

Example
The following code snippet returns the memory size.
Dim MemSize As Long

DisableForces

EnableForces

GetPLC5MemSizeChoiceByIndex Long(5 only)
50 • RSLogix Automation Interface Reference Manual

MemSize = gProcessor.GetPLC5MemSizeChoiceByIndex(1)

Use this method to set the memory size of the processor.

Syntax
SetPLC5MemSize (MemSize as Long) as Boolean

Arguments
MemSize - You can get valid memory sizes for the selected processor by using
NumberOfMemSizeChoices and GetPLC5MemSizeChoiceByIndex.

Returns
Returns True if successful, otherwise false is returned. False would be returned
if the nMemSize did not match any of the legal memory sizes acquired by
GetPLC5MemSizeChoiceByIndex.

Example
The following code snippet sets the memory size of the current processor.
Dim Result As Boolean
Dim MemSize As Long
MemSize = gProcessor.GetPLC5MemSizeChoiceByIndex(1)
Result = gProcessor.SetPLC5MemSize (MemSize)

Events
There are no events defined for the Processor object.

Summary example

The following example automates functionality within RSLogix 5 with the
automation interface by incorporating properties, methods and events from the
Application, LogixProject and Processor objects. Comments within the code
are preceded by an apostrophe ('). You’ll see that although the example is
specific to RSLogix 5 software, it is generic enough to adapt to RSLogix 500
with only minor form and comment alterations.

SetPLC5MemSize Boolean

Important This book assumes that you have the basic knowledge required to
work with forms and controls in Visual Basic.

(5 only)
Processor object • 51

Form
The following form builds on the forms first presented in Chapters 2 and 3.
Subsequent chapters in this book will continue to build on this form as new
objects are introduced.
52 • RSLogix Automation Interface Reference Manual

Code
'-----------------------------------
' Global variables
'-----------------------------------

Dim gApplication As RSLogix5.Application 'Application object
Dim gProject As RSLogix5.LogixProject 'LogixProject object
Dim gProcessor As RSLogix5.Processor 'Processor object

'-----------------------------------
' Application
'-----------------------------------

Private Sub Command1_Click()

 ' Set application object to the object returned from CreateObject.
 ' CreateObject is simply a method provided by Microsoft that creates
 ' a new registered COM application instance. In this case we start
 ' RSLogix 5 by using the "RSLogix5.Application" string.
 Set gApplication = CreateObject("RSLogix5.Application")
 ' At this point, if the CreateObject method functioned properly, the
 ' gApplication object is now a direct reference to the RSLogix5
 ' Object Model. Any properties or methods that we invoke on this
 ' object will immediately take effect in RSLogix.

 ' Immediately set the visible property of the application to 'True'
 gApplication.Visible = True

 ' Assign the AutoSaveInterval value to 3 minutes
 gApplication.AutoSaveInterval = 3

 ' Assign WindowState prop to lgxWindowStateMaximized enumeration
 gApplication.WindowState = lgxWindowStateMaximized

End Sub

Private Sub Command2_Click()
 ' Quit the application ignoring prompts and not saving changes.
 gApplication.Quit True, False
 ' Eliminate the reference to the application object
 Set gApplication = Nothing
End Sub

Private Sub Command3_Click()
On Error GoTo errorHandler
 ' Upload a project from the processor using the upload method of the
 ' application object while ignoring prompts, NOT saving the previous
 ' file, creating new file from the upload (using lgxUploadCreateNew
 ' enum (see the objectbrowser for more enumerations)), and go online
 ' (using the lgxGoOnline enum).
Processor object • 53

 ' Set the returned object reference to the gProject object.
 Set gProject = gApplication.Upload(True, False, lgxUploadCreateNew,
lgxGoOnline)
Exit Sub

errorHandler:
 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
End Sub

Private Sub Command4_Click()
 ' Get the currently open project in the application.
 Set gProject = gApplication.GetActiveProject
End Sub

'-------------------------------
' LogixProject
'-------------------------------

Private Sub Command5_Click()
 Dim returnValue As Boolean

 ' Save the currently open project, assign the return value to a
 ' variable and display that value in a message box.
 returnValue = gProject.Save(True, True)
 MsgBox "Returned: " & returnValue

End Sub

Private Sub Command6_Click()
On Error GoTo errorHandler
 Dim returnValue As Boolean

 ' Download the project to the current processor. This method call is
 ' ignoring all prompts, going online (using the lgxGoOnline enum),
 ' setting the processor to remote program mode (using the
 ' lgxREMOTEPROG enum) and displaying the return value in a message
 ' box
 returnValue = gProject.Download(True, lgxGoOnline, lgxREMOTEPROG)
 MsgBox "Returned: " & returnValue
Exit Sub

errorHandler:
 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
End Sub

Private Sub Text1_Click()
 ' Display the current name of the project in a text box.
54 • RSLogix Automation Interface Reference Manual

 Text1.Text = gProject.FullName
 Text2.Text = gProject.Name
End Sub

'-------------------------
' Processor
'-------------------------

Private Sub Text3_Click()
 ' Set the processors reference to a global variable.
 Set gProcessor = gProject.Processor

 ' Display the current node in a text box.
 Text3.Text = gProcessor.Node
End Sub

Private Sub Command7_Click()
 ' Set the processors reference to a global variable.
 Set gProcessor = gProject.Processor

 ' Enable forces in the processor
 gProcessor.EnableForces
End Sub
Processor object • 55

56 • RSLogix Automation Interface Reference Manual

The ProgramFiles collection represents all the program files in the project. The
ProgramFiles collection can be obtained from the “ProgramFiles” property of
the LogixProject object. The ProgramFiles collection is not creatable with the
CreateObject function.

The following commented code example illustrates how you might get the
ProgramFiles collection from the LogixProject object. The example adds error
checking and displays a message if the RSLogix application can find no
program files.

Properties
In most cases properties are characteristics or attributes of an object. Using a
property returns information about the object or causes a quality of the object
to change. The following properties define the ProgramFiles collection.

This property returns an Application object that represents the RSLogix
application.

Chapter ProgramFiles collection

'get the programfiles object
Set gProgFiles = gProject.ProgramFiles
If gProgFiles Is Nothing Then
'if the programfiles object does not exist then display an error
 MsgBox "RSLogix could not get Program Files!", vbExclamation,
"ERROR: 008"
 Exit Function
End If

Application -None-
Properties Methods Events

Add
Count
Item
Remove

Application Application - Read Only
ProgramFiles collection • 57

Methods
Using a method causes something to happen to an object. In most cases
methods are actions. Use any of the following methods to identify an action for
the ProgramFiles collection to perform. Although written for the RSLogix 5
software product, the short examples following each method may be easily
adapted to RSLogix 500. For example, type definitions may vary between
products, and those differences must be considered when adapting code to the
RSLogix 500 object model.

Use this method to create a new program file and add it to the ProgramFile
collection.

Syntax
Add(FileNumber as Integer, FileType as lgxProgramFileTypeConstants,
Debug as Boolean, IgnorePrompts as Boolean) as ProgramFile

Arguments
FileNumber - The number for the program file to be created.
FileType - Choose from the following lgxProgramFileTypeConstants. See also
Appendix B for descriptions of the possible selections.

(1) lgxLADDER
(2) lgxSFCNEW
(3) lgxSFCOLD
(4) lgxSTX
(9) lgxCAR

Debug - Select True to make the file a debug file, otherwise False.
IgnorePrompts - If set to True no user interface prompts are displayed to the user.
If False prompts are displayed.

Returns
If successful a new program file (defined by the supplied parameters) is created
and added to the Program Files collection and a reference to the new program
file is returned. If unsuccessful Nothing is returned.

Example
The following code snippet makes the call to RSLogix 5 to add program file #7
(a ladder logic file) to the program files collection. This file will not be a debug
file, and no user prompts will inform the user of its creation.
Set gProgramFile = gProgramFiles.Add(7, lgxLADDER, False, True)

Add ProgramFile
58 • RSLogix Automation Interface Reference Manual

Use this method to return the number of program file objects in the
ProgramFiles collection.

Syntax
Count() As Long

Returns
If successful the number of program file objects in the collection is returned.
This includes any unused program files between the first and last files defined
in the project.

Example
The following code snippet displays the number of program files in your
project.
MsgBox "Number of Program Files = " & gProgramFiles.Count

Use this method to retrieve a specified program file from the ProgramFiles
collection.

Syntax
Item(Index as Long) As ProgramFile

Arguments
Index - The value of index should be between 0 and Count-1 inclusive. This
represents the file number to be retrieved.

Returns
If successful the program file (specified by the index) is returned; otherwise
returns Nothing.

Example
The following code snippet displays the name of a specific program file
returned by the Item method.
Text1.text = gProgramFiles.Item(FileNumber).Name

Count Long

Item ProgramFile
ProgramFiles collection • 59

Use this method to remove a program file from the ProgramFiles collection.

Syntax
Remove(FileNumber as Integer, IgnorePrompts as Boolean) as Boolean

Arguments
FileNumber - The number of the program file you want removed.
IgnorePrompts - If set to True no user interface prompts are displayed to the user.
If False prompts are displayed.

Returns
If successful the designated program file is removed from the Program Files
collection and a value of True is returned; if unsuccessful False is returned.

Example
The following code snippet makes the call to remove program file #7 from the
program files collection. No user prompts will inform the user of its removal.
Result = gProgramFiles.Remove(7, True)

Events
No events have been defined for the ProgramFiles object/collection.

Summary example

The following example automates functionality within RSLogix 5 with the
automation interface by incorporating properties, methods and events from the
Application, LogixProject and Processor objects as well as the ProgramFiles
collection. Comments within the code are preceded by an apostrophe (').
You’ll see that although the example is specific to RSLogix 5 software, it is
generic enough to adapt to RSLogix 500 with only minor form and comment
alterations.

Remove Boolean

Important This book assumes that you have the basic knowledge required to
work with forms and controls in Visual Basic.
60 • RSLogix Automation Interface Reference Manual

Form
The following form builds on the forms first presented in Chapters 2, 3 and 4.
Subsequent chapters in this book will continue to build on this form as new
objects are introduced.

Code
'-----------------------------------
' Global variables
'-----------------------------------

Dim gApplication As RSLogix5.Application 'Application object
Dim gProject As RSLogix5.LogixProject 'LogixProject object
Dim gProcessor As RSLogix5.Processor 'Processor object
Dim gProgramFiles As RSLogix5.ProgramFiles 'ProgramFiles object
Dim gProgramFile As RSLogix5.ProgramFile 'ProgramFile object
ProgramFiles collection • 61

'-----------------------------------
' Application
'-----------------------------------

Private Sub Command1_Click()

 ' Set application object to the object returned from CreateObject.
 ' CreateObject is simply a method provided by Microsoft that creates
 ' a new registered COM application instance. In this case we start
 ' RSLogix 5 by using the "RSLogix5.Application" string.
 Set gApplication = CreateObject("RSLogix5.Application")
 ' At this point, if the CreateObject method functioned properly, the
 ' gApplication object is now a direct reference to the RSLogix5
 ' Object Model. Any properties or methods that we invoke on this
 ' object will immediately take effect in RSLogix.

 ' Immediately set the visible property of the application to 'True'
 gApplication.Visible = True

 ' Assign the AutoSaveInterval value to 3 minutes
 gApplication.AutoSaveInterval = 3

 ' Assign WindowState prop to lgxWindowStateMaximized enumeration
 gApplication.WindowState = lgxWindowStateMaximized

End Sub

Private Sub Command2_Click()
 ' Quit the application ignoring prompts and not saving changes.
 gApplication.Quit True, False
 ' Eliminate the reference to the application object
 Set gApplication = Nothing
End Sub

Private Sub Command3_Click()
On Error GoTo errorHandler
 ' Upload a project from the processor using the upload method of the
 ' application object while ignoring prompts, NOT saving the previous
 ' file, creating new file from the upload (using lgxUploadCreateNew
 ' enum (see the objectbrowser for more enumerations)), and go online
 ' (using the lgxGoOnline enum).
 ' Set the returned object reference to the gProject object.
 Set gProject = gApplication.Upload(True, False, lgxUploadCreateNew,
lgxGoOnline)
Exit Sub

errorHandler:
 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
End Sub
62 • RSLogix Automation Interface Reference Manual

Private Sub Command4_Click()
 ' Get the currently open project in the application.
 Set gProject = gApplication.GetActiveProject
End Sub

'-------------------------------
' LogixProject
'-------------------------------

Private Sub Command5_Click()
 Dim ReturnValue As Boolean

 ' Save the currently open project, assign the return value to a
 ' variable and display that value in a message box.
 ReturnValue = gProject.Save(True, True)
 MsgBox "Returned: " & ReturnValue

End Sub

Private Sub Command6_Click()
On Error GoTo errorHandler
 Dim ReturnValue As Boolean

 ' Download the project to the current processor. This method call is
 ' ignoring all prompts, going online (using the lgxGoOnline enum),
 ' setting the processor to remote program mode (using the
 ' lgxREMOTEPROG enum) and displaying the return value in a message
 ' box
 ReturnValue = gProject.Download(True, lgxGoOnline, lgxREMOTEPROG)
 MsgBox "Returned: " & ReturnValue
Exit Sub

errorHandler:
 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
End Sub

Private Sub Text1_Click()
 ' Display the current name of the project in a text box.
 Text1.Text = gProject.FullName
 Text2.Text = gProject.Name
End Sub

'-------------------------
' Processor
'-------------------------

Private Sub Text3_Click()
 ' Set the processors reference to a global variable.
 Set gProcessor = gProject.Processor
ProgramFiles collection • 63

 ' Display the current node in a text box.
 Text3.Text = gProcessor.Node
End Sub

Private Sub Command7_Click()
 ' Set the processors reference to a global variable.
 Set gProcessor = gProject.Processor

 ' Enable forces in the processor
 gProcessor.EnableForces
End Sub

'-------------------------
' Program Files Collection
'-------------------------

Private Sub Command8_Click()
 ' Set current programfiles collection reference from the project to
 ' a global variable.
 Set gProgramFiles = gProject.ProgramFiles

 ' Add new ladder file into the ProgramFiles collection. This method
 ' call sets the gProgramFile object to a new ProgramFile object
 ' created at the file number specified by the value of text4.text,
 ' using the lgxLADDER enum to specify to create a ladder file,
 ' that is NOT a debug file, and ignoring all prompts.
 Set gProgramFile = gProgramFiles.Add(CInt(Text4.Text), lgxLADDER,
False, True)

End Sub

Private Sub Command9_Click()
 Dim ReturnValue As Boolean

 ' Set current programfiles collection reference from the project to
 ' a global variable.
 Set gProgramFiles = gProject.ProgramFiles

 ' Remove the ProgramFile specified in the ext box from the
 ' ProgramFiles collection.
 ' Display the returned value in a message box.
 ReturnValue = gProgramFiles.Remove(CInt(Text4.Text), True)
 MsgBox "Returned: " & ReturnValue

End Sub
64 • RSLogix Automation Interface Reference Manual

The ProgramFile object represents the base functionality of a program file. It
is obtained when using the Item or Add methods.
You cannot create a separate instance of the ProgramFile object with the
CreateObject function.

Chapter ProgramFile object

Application
Debug
DefaultName
Description
FileNumber
FormattedName
InUse
MaxDescriptionLength
MaxNameLength
Name
Online
Programmable
ProtectionSupported - (RSLogix 500 only)
ReadPrivilege - (RSLogix 5 only)
Reserved - (RSLogix 500 only)
Type
WritePrivilege - (RSLogix 5 only)

-None-
Properties Methods Events

-None-
ProgramFile object • 65

The following commented code example illustrates a typical call to the main
program file (ladder file #2).

Properties
In most cases properties are characteristics or attributes of an object. Using a
property returns information about the object or causes a quality of the object
to change. The following properties define the ProgramFile object.

This property returns the Application object.

This property returns whether or not the program file is for debug use only.

This property returns the default name of the file.

This property returns or sets the description of the program file.

This property returns the file number.

Global gApplication As RSLogix5.Application
Sub buttonLoadFile2_Click()
 Dim ProgramFiles As RSLogix5.ProgramFiles
 Dim ProgramFile As RSLogix5.Programfile
 Dim CurrentProject As RSLogix5.LogixProject
 On Error Resume Next
 Set CurrentProject = gApplication.GetActiveProject()
 If Not CurrentProject Is Nothing Then
 Set ProgramFiles = CurrentProject.ProgramFiles
 Set Programfile = ProgramFiles(2)
 If Not Programfile Is Nothing Then
 'Okay to use ProgramFile object...
 End If
 End If
End Sub

Application Application - Read Only

Debug Boolean - Read Only

DefaultName String - Read Only

Description String - Read/Write

FileNumber Long - Read Only
66 • RSLogix Automation Interface Reference Manual

This property returns formatted name of the file. The format returned is as
follows: SYS 0, LAD 2, SFC 4, or STX 6.

This property returns whether or not the file is being used.

This property returns the maximum allowable characters for the file
description.

This property returns the maximum allowable characters for the file name.

This property returns or sets the name of the file.

This property returns whether or not the project controlling this program file
is currently online with the processor.

This property returns whether or not the program file is programmable.

This property returns the attribute of protection supported by this program file.

This property returns whether or not under the current privilege class the
program file is read-enabled. This is a feature available only to processors with
the passwords and privileges functionality.

This property returns True if the program file is reserved.

FormattedName String - Read Only

InUse Boolean - Read Only

MaxDescriptionLength Long - Read Only

MaxNameLength Long - Read Only

Name String - Read/Write

Online Boolean - Read Only

Programmable Boolean - Read Only

ProtectionSupported Boolean - Read Only

ReadPrivilege Boolean - Read Only

Reserved Boolean - Read Only(500 only)

 (5 only)

(500 only)
ProgramFile object • 67

This property returns the type of file. Possible returned types are listed below
and described in Appendix B. .

This property returns whether or not under the current privilege class the
program file is write-enabled. This is a feature available only to processors with
the passwords and privileges functionality.

Methods
There are no methods defined for the ProgramFile object.

Events
There are no events defined for the ProgramFile object.

Summary example

The following example automates functionality within RSLogix 5 with the
automation interface by incorporating properties, methods and events from the
Application, LogixProject and Processor objects, the ProgramFiles collection
and the ProgramFile object. Comments within the code are preceded by an
apostrophe ('). You’ll see that although the example is specific to RSLogix 5
software, it is generic enough to adapt to RSLogix 500 with only minor form
and comment alterations.

Type lgxProgramFileTypeConstants - Read Only

(0) lgxHEADER (3) lgxSFCOLD
(1) lgxLADDER (4) lgxSTX
(2) lgxSFCNEW (9) lgxCAR

WritePrivilege Boolean - Read Only

Important This book assumes that you have the basic knowledge required to
work with forms and controls in Visual Basic.

 (5 only)
68 • RSLogix Automation Interface Reference Manual

Form
The following form builds on the forms first presented in Chapters 2, 3, 4 and
5. Subsequent chapters in this book will continue to build on this form as new
objects are introduced.
ProgramFile object • 69

Code
'-----------------------------------
' Global variables
'-----------------------------------

Dim gApplication As RSLogix5.Application 'Application object
Dim gProject As RSLogix5.LogixProject 'LogixProject object
Dim gProcessor As RSLogix5.Processor 'Processor object
Dim gProgramFiles As RSLogix5.ProgramFiles 'ProgramFiles object
Dim gProgramFile As RSLogix5.ProgramFile 'ProgramFile object

'-----------------------------------
' Application
'-----------------------------------

Private Sub Command1_Click()

 ' Set application object to the object returned from CreateObject.
 ' CreateObject is simply a method provided by Microsoft that creates
 ' a new registered COM application instance. In this case we start
 ' RSLogix 5 by using the "RSLogix5.Application" string.
 Set gApplication = CreateObject("RSLogix5.Application")
 ' At this point, if the CreateObject method functioned properly, the
 ' gApplication object is now a direct reference to the RSLogix5
 ' Object Model. Any properties or methods that we invoke on this
 ' object will immediately take effect in RSLogix.

 ' Immediately set the visible property of the application to 'True'
 gApplication.Visible = True

 ' Assign the AutoSaveInterval value to 3 minutes
 gApplication.AutoSaveInterval = 3

 ' Assign WindowState prop to lgxWindowStateMaximized enumeration
 gApplication.WindowState = lgxWindowStateMaximized

End Sub

Private Sub Command2_Click()
 ' Quit the application ignoring prompts and not saving changes.
 gApplication.Quit True, False
 ' Eliminate the reference to the application object
 Set gApplication = Nothing
End Sub

Private Sub Command3_Click()
On Error GoTo errorHandler
 ' Upload a project from the processor using the upload method of the
70 • RSLogix Automation Interface Reference Manual

 ' application object while ignoring prompts, NOT saving the previous
 ' file, creating new file from the upload (using lgxUploadCreateNew
 ' enum (see the objectbrowser for more enumerations)), and go online
 ' (using the lgxGoOnline enum).
 ' Set the returned object reference to the gProject object.
 Set gProject = gApplication.Upload(True, False, lgxUploadCreateNew,
lgxGoOnline)
Exit Sub

errorHandler:
 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
End Sub

Private Sub Command4_Click()
 ' Get the currently open project in the application.
 Set gProject = gApplication.GetActiveProject
End Sub

'-------------------------------
' LogixProject
'-------------------------------

Private Sub Command5_Click()
 Dim ReturnValue As Boolean

 ' Save the currently open project, assign the return value to a
 ' variable and display that value in a message box.
 ReturnValue = gProject.Save(True, True)
 MsgBox "Returned: " & ReturnValue

End Sub

Private Sub Command6_Click()
On Error GoTo errorHandler
 Dim ReturnValue As Boolean

 ' Download the project to the current processor. This method call is
 ' ignoring all prompts, going online (using the lgxGoOnline enum),
 ' setting the processor to remote program mode (using the
 ' lgxREMOTEPROG enum) and displaying the return value in a message
 ' box
 ReturnValue = gProject.Download(True, lgxGoOnline, lgxREMOTEPROG)
 MsgBox "Returned: " & ReturnValue
Exit Sub

errorHandler:
 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
ProgramFile object • 71

End Sub

Private Sub Text1_Click()
 ' Display the current name of the project in a text box.
 Text1.Text = gProject.FullName
 Text2.Text = gProject.Name
End Sub

'-------------------------
' Processor
'-------------------------

Private Sub Text3_Click()
 ' Set the processor’s reference to a global variable.
 Set gProcessor = gProject.Processor

 ' Display the current node in a text box.
 Text3.Text = gProcessor.Node
End Sub

Private Sub Command7_Click()
 ' Set the processor’s reference to a global variable.
 Set gProcessor = gProject.Processor

 ' Enable forces in the processor
 gProcessor.EnableForces
End Sub

'-------------------------
' Program Files Collection
'-------------------------

Private Sub Command8_Click()
 ' Set current programfiles collection reference from the project to
 ' a global variable.
 Set gProgramFiles = gProject.ProgramFiles

 ' Add new ladder file into the ProgramFiles collection. This method
 ' call sets the gProgramFile object to a new ProgramFile object
 ' created at the file number specified by the value of text4.text,
 ' using the lgxLADDER enum to specify to create a ladder file,
 ' that is NOT a debug file, and ignoring all prompts.
 Set gProgramFile = gProgramFiles.Add(CInt(Text4.Text), lgxLADDER,
False, True)

End Sub

Private Sub Command9_Click()
 Dim ReturnValue As Boolean

 ' Set the current programfiles collection reference from the project
72 • RSLogix Automation Interface Reference Manual

 ' to a global variable.
 Set gProgramFiles = gProject.ProgramFiles

 ' Remove the ProgramFile specified in the ext box from the
 ' ProgramFiles collection.
 ' Display the returned value in a message box.
 ReturnValue = gProgramFiles.Remove(CInt(Text4.Text), True)
 MsgBox "Returned: " & ReturnValue

End Sub

'-----------------------------
' ProgramFile Object
'-----------------------------

Private Sub Command10_Click()

 ' Set the current programfiles collection reference from the project
 ' to a global variable.
 Set gProgramFiles = gProject.ProgramFiles

 ' Set the programfile reference specified by the value of a textbox
 ' to the current global object.
 Set gProgramFile = gProgramFiles(CInt(Text4.Text))

End Sub

Private Sub Text5_Click()
 ' Assign the textboxes the Type and Name of the programfile.
 Text5.Text = gProgramFile.Type
 Text6.Text = gProgramFile.Name

End Sub

Private Sub Text6_Change()
 ' Change the ProgramFile.Name property to the current text.
 gProgramFile.Name = Text6.Text

End Sub
ProgramFile object • 73

74 • RSLogix Automation Interface Reference Manual

The DataFiles collection represents the collection of data files in the RSLogix
project. The DataFiles collection can be obtained using the DataFiles property
of the LogixProject object. The DataFiles collection is not creatable with the
CreateObject function.

The following commented code example illustrates how you might get the
DataFiles collection from the LogixProject object. This example adds error
checking and notification.

Properties
In most cases properties are characteristics or attributes of an object/
collection. Using a property returns information or causes a quality of the
object/collection to change. The following properties define the DataFiles
collection.

Chapter DataFiles collection

'get the DataFiles collection from the LogixProject object
Set gDataFiles = gLogixProject.DataFiles
'if Logix failed to get the Data Files collection then display an
'error and exit
If gDataFiles Is Nothing Then
 MsgBox "ERROR: Could not get Data Files!", vbExclamation, "ERROR"
 Exit Function
End If

Application -None-
Properties Methods Events

Add
Count
GetDataValue
Item
Remove
SetDataValue
DataFiles collection • 75

This property returns an Application object that represents the RSLogix 5 or
500 application.

Methods
Using a method causes something to happen to an object. In most cases
methods are actions. Use any of the following methods to identify an action for
the DataFiles object (collection) to perform. Although written for RSLogix 5,
the short examples following each method may be easily adapted to RSLogix
500. For example, type definitions may vary between products, and those
differences must be considered when adapting code to RSLogix 500.

Use this method to create a new data file and add it to the DataFiles collection.

Syntax
Add(FileNumber as Integer, FileType as lgxDataFileTypeConstants,
NumberOfElements as Integer, IgnorePrompts as Boolean) as DataFile

Arguments
FileNumber - The number of the data file to add.
FileType - The type of data file to add. The valid list is provided and defined in
Appendix B.
NumberOfElements - The number of elements in the data file to add.
IgnorePrompts - When True no user interface confirmations will be displayed.
If FALSE prompts are displayed.

Returns
If successful the data file object is created and added to the DataFiles collection
and a reference to the newly created data file is returned. If unsuccessful
Nothing is returned.

Example
The following code snippet makes the call to RSLogix 5 to add a binary file #20
to the data files collection. This file will have 45 elements, and no user prompts
will inform the user of its creation.
Set gDataFile = gDataFiles.Add(20, lgxDTBINARY, 45, True)

Application Application - Read Only

Add DataFile
76 • RSLogix Automation Interface Reference Manual

Use this method to return the number of data file objects in the collection.

Syntax
Count() As Long

Returns
If successful the number of data file objects in the collection is returned.

Example
The following code snippet displays the number of data files in your project.
MsgBox "Number of Data Files = " & gDataFiles.Count

Use this method to return the current data value of a specified data address.

Syntax
GetDataValue(Address As String) As String

Arguments

Address - The string address for the data to be read.

Returns
If successful the current data value for the address that you specify is returned
as a string.

Example
The following code snippet returns the value of the accumulator in Timer T4:0.
Dim value as String
value = gDataFiles.GetDataValue("T4:0.acc")

Use this method to retrieve a data file.

Syntax
Item(Index as Long) As DataFile

Arguments
Index - The value of index should be between 0 and Count-1 inclusive. This
represents the number of the data file to be retrieved.

Count Long

GetDataValue String

Item Data File
DataFiles collection • 77

Returns
If successful the data file object (specified by the index) is returned. If
unsuccessful Nothing is returned.

Example
The following code snippet displays the name of a data file retrieved by the
Item property in a text box.
text1.Text = gDataFiles.Item(Data_File).Name

Use this method to remove a data file from the DataFiles collection.

Syntax
Remove(FileNumber as Integer, IgnorePrompts as Boolean) As Boolean

Arguments
FileNumber - The number of the file to remove.
IgnorePrompts - When True no user interface confirmations will be displayed.
If FALSE prompts are displayed.

Returns
If successful the indicated data file is removed from the DataFiles collection
and a value of True is returned; if unsuccessful False is returned.

Example
The following code snippet removes data file #11 from the project without
issuing any prompts first.
Result = gDataFiles.Remove(11, True)

Use this method to write a data value to a data address.

Syntax
SetDataValue(Address as String, Value as String) as Boolean

Arguments
Address - The string address to be written to.
Value - The value to be written to the data file.

Returns
If successful the value is written and True is returned; if unsuccessful False is
returned.

Remove Boolean

SetDataValue Boolean
78 • RSLogix Automation Interface Reference Manual

Example
The following code snippet sets the value of the T4:0 timer preset to 60.
Res = gDataFiles.SetDataValue("T4:0.pre","60")

Events
There are no events defined for the DataFiles object.

Summary Example

The following example automates functionality within RSLogix 5 with the
automation interface by incorporating properties, methods and events from the
Application and LogixProject object. Comments within the code are preceded
by an apostrophe ('). You’ll see that although the example is specific to
RSLogix 5 software, it is generic enough to adapt to RSLogix 500 with only
minor form and comment alterations.

Important This book assumes that you have the basic knowledge required to
work with forms and controls in Visual Basic.
DataFiles collection • 79

Form
The following form builds on the forms first presented in Chapters 2 and 3.
80 • RSLogix Automation Interface Reference Manual

Code
'-----------------------------------
' Global variables
'-----------------------------------

Dim gApplication As RSLogix5.Application 'Application object
Dim gProject As RSLogix5.LogixProject 'LogixProject object
Dim gDataFiles As RSLogix5.DataFiles 'DataFiles Collection
Dim gDataFile As RSLogix5.DataFile 'DataFile object

'-----------------------------------
' Application
'-----------------------------------

Private Sub Command1_Click()

 ' Set the application object to object returned from CreateObject.
 ' CreateObject is simply a method provided by Microsoft that creates
 ' a new registered COM application instance. In this case we start
 ' RSLogix 5 by using the "RSLogix5.Application" string.
 Set gApplication = CreateObject("RSLogix5.Application")
 ' At this point, if the CreateObject method functioned properly, the
 ' gApplication object is now a direct reference to the RSLogix5
 ' Object Model. Any properties or methods that we invoke on this
 ' object will immediately take effect in RSLogix.

 ' Immediately set the visible property of the application to 'True'
 gApplication.Visible = True

 ' Assign the AutoSaveInterval value to 3 minutes
 gApplication.AutoSaveInterval = 3

 ' Assign WindowState prop to lgxWindowStateMaximized enumeration
 gApplication.WindowState = lgxWindowStateMaximized

End Sub

Private Sub Command2_Click()
 ' Quit the application ignoring prompts and not saving changes.
 gApplication.Quit True, False
 ' Eliminate the reference to the application object
 Set gApplication = Nothing
End Sub

Private Sub Command3_Click()
On Error GoTo errorHandler
 ' Upload a project from the processor using the upload method of the
 ' application object while ignoring prompts, NOT saving the previous
 ' file, creating new file from the upload (using lgxUploadCreateNew
 ' enum (see objectbrowser for more enumerations)), and going online
DataFiles collection • 81

 ' (using the lgxGoOnline enum).
 ' Set the returned object reference to the gProject object.
 Set gProject = gApplication.Upload(True, False, lgxUploadCreateNew,
lgxGoOnline)
Exit Sub

errorHandler:
 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
End Sub

Private Sub Command4_Click()
 ' Get the currently open project in the application.
 Set gProject = gApplication.GetActiveProject
End Sub

'-------------------------------
' LogixProject
'-------------------------------

Private Sub Command5_Click()
 Dim ReturnValue As Boolean

 ' Save the currently open project, assign return value to a variable
 ' and display that value in a message box.
 ReturnValue = gProject.Save(True, True)
 MsgBox "Returned: " & ReturnValue

End Sub

Private Sub Command6_Click()
On Error GoTo errorHandler
 Dim ReturnValue As Boolean

 ' Download the project to the current processor. This method call is
 ' ignoring all prompts, going online (using the lgxGoOnline enum),
 ' setting the processor to remote program mode (using the
 ' lgxREMOTEPROG enum) and displaying the return value in a message
 ' box
 ReturnValue = gProject.Download(True, lgxGoOnline, lgxREMOTEPROG)
 MsgBox "Returned: " & ReturnValue
Exit Sub

errorHandler:
 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
End Sub

Private Sub Text1_Click()
82 • RSLogix Automation Interface Reference Manual

 ' Display the current name of the project in a text box.
 Text1.Text = gProject.FullName
 Text2.Text = gProject.Name
End Sub

'-------------------------
' DataFiles
'-------------------------

Private Sub Command7_Click()
 ' Set the current datafiles reference to a global variable.
 Set gDataFiles = gProject.DataFiles

 ' Retrieve the datafile reference for file number entered
 ' by the user in the text box.
 Set gDataFile = gDataFiles.Item(CInt(Text3.Text))

End Sub

Private Sub Command8_Click()
 Dim ReturnValue As Boolean

 ' Set the current datafiles reference to a global variable.
 Set gDataFiles = gProject.DataFiles

 ' Set a data value at a user specified address to a user specified
 ' value
 ReturnValue = gDataFiles.SetDataValue(Text4.Text, Text5.Text)

End Sub
DataFiles collection • 83

84 • RSLogix Automation Interface Reference Manual

The DataFile object represents a data file in the project or processor. The
DataFile object is obtained from the DataFiles collection via the Add and Item
methods. You cannot create a new instance of a DataFile object with the
CreateObject function.

Chapter DataFile object

Application
CanBeDeleted
CanBeMonitored
CanChangeScope
CanChangeSize
Debug
Description
FileNumber
FormattedName
GlobalScope
InUse
LocalScope
MaxDescriptionLength
MaxNameLength
Name
NumberOfElements
Online
ReadPrivilege (RSLogix 5 only)
Reserved (RSLogix 500 only)
Scopeable
Type
TypeAsString
WritePrivilege (RSLogix 5 only)

-None-

Properties Methods Events

-None-
DataFile object • 85

The following commented code example illustrates how you might access the
DataFile object.
__
Private Sub Form_Load()
Set gDataFiles = gProject.DataFiles
Set gDataFile = gDataFile(6)
If gDataFile Is Nothing Then
'if the DataFile object does not exist then display an error
 MsgBox "Error getting Data File"
End If

Properties
In most cases properties are characteristics or attributes of an object. Using a
property returns information about the object or causes a quality of the object
to change. The following properties define the DataFile object.

Returns an Application object that represents the RSLogix application.

Returns whether or not the data file may be deleted

Returns whether or not the data file may be monitored.

Returns whether or not the scope of this file can be changed.

Returns whether or not the file can have the number of elements changed.

Returns whether or not the file is for debug use only.

Represents the text description of this data file.

Application Application - Read Only

CanBeDeleted Boolean - Read Only

CanBeMonitored Boolean - Read Only

CanChangeScope Boolean - Read Only

CanChangeSize Boolean - Read Only

Debug Boolean - Read Only

Description String - Read/Write
86 • RSLogix Automation Interface Reference Manual

Returns the file number of this data file.

Returns the full formatted name of the data file.

Returns whether or not this data file is of global scope.

Returns whether or not this file is being used.

Returns whether or not this data file is of local scope.

Returns the maximum number of characters for the file description.

Returns the maximum number of characters for the file name.

Returns or sets the name of the file

Returns (or sets, with RSLogix 5 only) the number of elements in this data file

Returns whether or not the data file is online in the processor.

FileNumber Integer - Read Only

FormattedName String - Read Only

GlobalScope Boolean - Read Only

InUse Boolean - Read Only

LocalScope Boolean - Read Only

MaxDescriptionLength Integer - Read Only

MaxNameLength Integer - Read Only

Name String - Read/Write

NumberOfElements Integer - Read/Write in RSLogix 5
 Read Only in RSLogix 500

Online Boolean - Read Only
DataFile object • 87

This property returns whether or not under the current privilege class the data
file is read-enabled. This is a feature available only to processors with the
passwords and privileges functionality.

This property returns True if the data file is reserved.

Returns whether or not this file can be scoped.

Returns the type of data file as a lgxDataFileTypeConstants. The valid
selections are listed and defined in Appendix B.

Returns the type of data file as a text string.

This property returns whether or not under the current privilege class the data
file is write-enabled. This is a feature available only to processors with the
passwords and privileges functionality.

Methods
There are no methods defined for the DataFile object.

Events
There are no events defined for the DataFile object.

ReadPrivilege Boolean - Read Only

Reserved Boolean - Read Only

Scopeable Boolean - Read Only

Type lgxDataFileTypeConstants - Read Only

TypeAsString String - Read Only

WritePrivilege Boolean - Read Only

 (500 only)

 (5 only)

 (5 only)
88 • RSLogix Automation Interface Reference Manual

Summary Example

The following example automates functionality within RSLogix 5 with the
automation interface by incorporating properties, methods and events from the
Application and LogixProject object and the DataFiles collection. Comments
within the code are preceded by an apostrophe ('). You’ll see that although the
example is specific to RSLogix 5 software, it is generic enough to adapt to
RSLogix 500 with only minor form and comment alterations.

Important This book assumes that you have the basic knowledge required to
work with forms and controls in Visual Basic.
DataFile object • 89

Form
The following form builds on the forms first presented in Chapters 2, 3 and 7.

Code

'-----------------------------------
' Global variables
'-----------------------------------
Dim gApplication As RSLogix5.Application 'Application object
Dim gProject As RSLogix5.LogixProject 'LogixProject object
Dim gDataFiles As RSLogix5.DataFiles 'DataFiles Collection
Dim gDataFile As RSLogix5.DataFile 'DataFile object
90 • RSLogix Automation Interface Reference Manual

'-----------------------------------
' Application
'-----------------------------------

Private Sub Command1_Click()

 ' Set the application object to object returned from CreateObject.
 ' CreateObject is simply a method provided by Microsoft that creates
 ' a new registered COM application instance. In this case we start
 ' RSLogix 5 by using the "RSLogix5.Application" string.
 Set gApplication = CreateObject("RSLogix5.Application")
 ' At this point, if the CreateObject method functioned properly, the
 ' gApplication object is now a direct reference to the RSLogix5
 ' Object Model. Any properties or methods that we invoke on this
 ' object will immediately take effect in RSLogix.

 ' Immediately set the visible property of the application to 'True'
 gApplication.Visible = True

 ' Assign the AutoSaveInterval value to 3 minutes
 gApplication.AutoSaveInterval = 3

 ' Assign WindowState prop to lgxWindowStateMaximized enumeration
 gApplication.WindowState = lgxWindowStateMaximized

End Sub

Private Sub Command2_Click()
 ' Quit the application ignoring prompts and not saving changes.
 gApplication.Quit True, False
 ' Eliminate the reference to the application object
 Set gApplication = Nothing
End Sub
DataFile object • 91

Private Sub Command3_Click()
On Error GoTo errorHandler
 ' Upload a project from the processor using the upload method of the
 ' application object while ignoring prompts, NOT saving the previous
 ' file, creating new file from the upload (using lgxUploadCreateNew
 ' enum (see objectbrowser for more enumerations)), and going online
 ' (using the lgxGoOnline enum).
 ' Set the returned object reference to the gProject object.
 Set gProject = gApplication.Upload(True, False, lgxUploadCreateNew,
lgxGoOnline)
Exit Sub

errorHandler:
 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
End Sub

Private Sub Command4_Click()
 ' Get the currently open project in the application.
 Set gProject = gApplication.GetActiveProject
End Sub

'-------------------------------
' LogixProject
'-------------------------------

Private Sub Command5_Click()
 Dim ReturnValue As Boolean

 ' Save the currently open project, assign return value to a variable
 ' and display that value in a message box.
 ReturnValue = gProject.Save(True, True)
 MsgBox "Returned: " & ReturnValue

End Sub

Private Sub Command6_Click()
On Error GoTo errorHandler
 Dim ReturnValue As Boolean

 ' Download the project to the current processor. This method call is
 ' ignoring all prompts, going online (using the lgxGoOnline enum),
 ' setting the processor to remote program mode (using the
 ' lgxREMOTEPROG enum) and displaying the return value in a message
 ' box
 ReturnValue = gProject.Download(True, lgxGoOnline, lgxREMOTEPROG)
 MsgBox "Returned: " & ReturnValue
Exit Sub

errorHandler:
92 • RSLogix Automation Interface Reference Manual

 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
End Sub

Private Sub Text1_Click()
 ' Display the current name of the project in a text box.
 Text1.Text = gProject.FullName
 Text2.Text = gProject.Name
End Sub

'-------------------------
' DataFiles
'-------------------------

Private Sub Command7_Click()
 ' Set the current datafiles reference to a global variable.
 Set gDataFiles = gProject.DataFiles

 ' Retrieve the datafile reference for file number entered
 ' by the user in the text box.
 Set gDataFile = gDataFiles.Item(CInt(Text3.Text))

End Sub

Private Sub Command8_Click()
 Dim ReturnValue As Boolean

 ' Set the current datafiles reference to a global variable.
 Set gDataFiles = gProject.DataFiles

 ' Set a data value at a user specified address to a user specified
 ' value
 ReturnValue = gDataFiles.SetDataValue(Text4.Text, Text5.Text)

End Sub

'--------------------------
' DataFile
'--------------------------

Private Sub Command9_Click()
 ' Set the current datafiles reference to a global variable.
 Set gDataFiles = gProject.DataFiles

 ' Set the DataFile reference specified by the user to the current
 ' global variable.
 Set gDataFile = gDataFiles(CInt(Text3.Text))

 ' Display the values of the NumberOfElements, TypeAsString, and
 ' name properties to their respective text boxes.
DataFile object • 93

 Text6.Text = gDataFile.NumberOfElements
 Text7.Text = gDataFile.TypeAsString
 Text8.Text = gDataFile.Name
End Sub

Private Sub Text8_Change()
 ' As a user enters a new name into the text field, update the
 ' name property in RSLogix5
 gDataFile.Name = Text8.Text
End Sub
94 • RSLogix Automation Interface Reference Manual

The LadderFile object represents a ladder file in the project/processor. Obtain
the LadderFile object from the “ProgramFiles” Collection. You cannot create
a separate instance of the LadderFile object with the CreateObject function.

Chapter LadderFile object

Application
Debug
DefaultName
Description
EditsActive
FileNumber
FormattedName
InUse
MaxDescriptionLength
MaxNameLength
Name
Online
OnlineEdits
Programmable
ProtectionSupported (500 only)
RamEditsPending
ReadPrivilege (5 only)
Reserved
Type
WritePrivilege (5 only)

-None-
Properties Methods Events

GetRung
GetRungAsAscii
InsertRungAsAscii
NumerOfRungs
RemoveRung
LadderFile object • 95

The following commented code gets the ladder file which was specified by the
FileNumber variable that was passed in. If this fails an error message is
returned.

Properties
In most cases properties are characteristics or attributes of an object. Using a
property returns information about the object or causes a quality of the object
to change. The following properties define the LadderFile object.

This property returns the application object.

This property returns whether or not the ladder file is for debugging use only.

This property returns the default name of the ladder file.

This property returns or sets the description string for the ladder file.

This property returns whether or not there are any edits active in the
processor that have not been assembled

This property returns the number of the ladder file.

Set gLadderFile = gLogixProject.ProgramFiles(FileNumber)
'get the ladderfile object from RSLogix
If gLadderFile Is Nothing Then
'if that failed then display an error and exit
 MsgBox "ERROR: RSLogix could not get the requested Ladder File",
vbExclamation, "ERROR 008"
 Exit Function
End If

Application Application - Read Only

Debug Boolean - Read Only

DefaultName String - Read Only

Description String - Read/Write

EditsActive Boolean - Read Only

FileNumber Long - Read Only
96 • RSLogix Automation Interface Reference Manual

This property returns the formatted name of the file. The format returned is as
follows: SYS 0, LAD 2, SFC 4, or STX 6.

This property returns whether or not the file is being used.

This property returns the maximum allowable characters for the ladder file
description.

This property returns the maximum allowable characters for the file name.

This property returns or sets the name for the ladder file.

This property returns whether or not the project controlling this ladder file is
currently online with the processor.

This property returns whether or not there are any online edits.

This property returns whether or not the ladder file is programmable.

This property returns the attribute of protection supported by this ladder file.

This property returns whether or not there are any edits pending that are not
in the processor or verified in the offline file.

FormattedName String - Read Only

InUse Boolean - Read Only

MaxDescriptionLength Long - Read Only

MaxNameLength Long - Read Only

Name String - Read/Write

Online Boolean - Read Only

OnlineEdits Boolean - Read Only

Programmable Boolean - Read Only

ProtectionSupported Boolean - Read Only

RamEditsPending Boolean - Read Only

(500 only)
LadderFile object • 97

This property returns whether or not under the current privilege class the
ladder file is read-enabled. This is a feature available only to processors with the
passwords and privileges functionality.

This property returns True if the ladder file is reserved.

This property returns the type of ladder file as a lgxProgramFileTypeConstants.
The valid selections are listed and defined in Appendix B.

This property returns whether or not under the current privilege class the
ladder (program) file is write-enabled. This is a feature available only to
processors with the passwords and privileges functionality.

Methods
Using a method causes something to happen to an object. In most cases
methods are actions. Use any of the following methods to identify an action for
the LadderFile object to perform. Although written for the RSLogix 5 software
product, the short examples following each method may be easily adapted to
RSLogix 500. For example, type definitions may vary between products, and
those differences must be considered when adapting code to the RSLogix 500
object model.

Use this method to retrieve the specified rung of logic.

Syntax
GetRung(RungNumber as Long) as Rung

Arguments
RungNumber - The rung number to get.

ReadPrivilege Boolean - Read Only

Reserved Boolean - Read Only

Type lgxProgramFileTypeConstants - Read Only

WritePrivilege Boolean - Read Only

GetRung Rung

(5 only)

(5 only)
98 • RSLogix Automation Interface Reference Manual

Returns
If successful the rung object located at the index rung is returned.

Example
The following code snippet gets the current rung of ladder logic (where
“currung” was initialized as an integer) and sets its value to the Rung object.
Set gRung = gLadderFile.GetRung(currung)

Use this method to retrieve the ASCII format for a specified rung of ladder
logic.

Syntax
GetRungAsAscii(RungNumber as Long) as String

Arguments
RungNumber - The rung number to get.

Returns
If successful the ASCII representation of the rung object is returned; otherwise
returns a Null string.

Example
The following code snippet gets the ASCII rung text and displays it in a text
box.
Text1.Text = gLadderFile.RungAsAscii(x)

Use this method to insert a rung or rungs of logic into the ladder file by
providing the ASCII format of the rung.

Syntax
InsertRungAsAscii(RungNumber as Integer, RungString as String) as Boolean

Arguments
RungNumber as Integer - The rung number to insert.
RungString as String - The ASCII string representing the component makeup of
the rung(s) to insert. Make sure to begin each rung in the string with a SOR
(start of rung) and end it with an EOR (end of rung) statement.

GetRungAsAscii String

InsertRungAsAscii Boolean
LadderFile object • 99

Returns
If successful a rung (or rungs) of ladder logic is inserted into the program file
and a value of True is returned; if unsuccessful False is returned.

Example
The following code snippet inserts the following rung at position #4 in your
ladder logic program.
Res = gLadderFile.InsertRungAsAscii(4, "SOR XIC B3/0 OTE B3/1 EOR")

Use this method to determine the number of rungs in the ladder file.

Syntax
NumberOfRungs() as Integer

Returns
If successful the number of rungs in the file is returned.

Example
The following code snippet sets the variable Y equal to the number of rungs in
the ladder logic program.
Y = gLadderFile.NumberOfRung

Use this method to remove a rung of logic from the ladder file by providing the
rung number.

Syntax
RemoveRung(RungNumber as Long) as Boolean

Arguments
RungNumber - The number of the rung to be removed.

NumberOfRungs Integer

RemoveRung Boolean
100 • RSLogix Automation Interface Reference Manual

Returns
If successful a value of True is returned; if unsuccessful False is returned.

Example
The following code snippet removes rung #13 from the ladder logic program.
Result = gLadderFile.RemoveRung(13)

Events
No events have been defined for the ProgramFiles collection.

Summary example

The following example automates functionality within RSLogix 5 with the
automation interface. Comments within the code are preceded by an
apostrophe ('). You’ll see that although the example is specific to RSLogix 5
software, it is generic enough to adapt to RSLogix 500 with only minor form
and comment alterations.

Important This book assumes that you have the basic knowledge required to
work with forms and controls in Visual Basic.
LadderFile object • 101

Form
The following form builds on previous examples in this book.
102 • RSLogix Automation Interface Reference Manual

Code
'-----------------------------------
' Global variables
'-----------------------------------

Dim gApplication As RSLogix5.Application 'Application object
Dim gProject As RSLogix5.LogixProject 'LogixProject object
Dim gProcessor As RSLogix5.Processor 'Processor object
Dim gProgramFiles As RSLogix5.ProgramFiles 'ProgramFiles object
Dim gProgramFile As RSLogix5.ProgramFile 'ProgramFile object
Dim gLadderFile As RSLogix5.LadderFile 'LadderFile Object

'-----------------------------------
' Application
'-----------------------------------

Private Sub Command1_Click()

 ' Set application object to the object returned from CreateObject.
 ' CreateObject is simply a method provided by Microsoft that creates
 ' a new registered COM application instance. In this case we start
 ' RSLogix 5 by using the "RSLogix5.Application" string.
 Set gApplication = CreateObject("RSLogix5.Application")
 ' At this point, if the CreateObject method functioned properly, the
 ' gApplication object is now a direct reference to the RSLogix5
 ' Object Model. Any properties or methods that we invoke on this
 ' object will immediately take effect in RSLogix.

 ' Immediately set the visible property of the application to 'True'
 gApplication.Visible = True

 ' Assign the AutoSaveInterval value to 3 minutes
 gApplication.AutoSaveInterval = 3

 ' Assign WindowState prop to lgxWindowStateMaximized enumeration
 gApplication.WindowState = lgxWindowStateMaximized

End Sub

Private Sub Command2_Click()
 ' Quit the application ignoring prompts and not saving changes.
 gApplication.Quit True, False
 ' Eliminate the reference to the application object
 Set gApplication = Nothing
End Sub

Private Sub Command3_Click()
On Error GoTo errorHandler
 ' Upload a project from the processor using the upload method of the
 ' application object while ignoring prompts, NOT saving the previous
LadderFile object • 103

 ' file, creating new file from the upload (using lgxUploadCreateNew
 ' enum (see objectbrowser for more enumerations)), and going online
 ' (using the lgxGoOnline enum).
 ' Set the returned object reference to the gProject object.
 Set gProject = gApplication.Upload(True, False, lgxUploadCreateNew,
lgxGoOnline)
Exit Sub

errorHandler:
 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
End Sub

Private Sub Command4_Click()
 ' Get the currently open project in the application.
 Set gProject = gApplication.GetActiveProject
End Sub

'-------------------------------
' LogixProject
'-------------------------------

Private Sub Command5_Click()
 Dim ReturnValue As Boolean

 ' Save the currently open project, assign the return value to a
 ' variable and display that value in a message box.
 ReturnValue = gProject.Save(True, True)
 MsgBox "Returned: " & ReturnValue

End Sub

Private Sub Command6_Click()
On Error GoTo errorHandler
 Dim ReturnValue As Boolean

 ' Download the project to the current processor. This method call is
 ' ignoring all prompts, going online (using the lgxGoOnline enum),
 ' setting the processor to remote program mode (using the
 ' lgxREMOTEPROG enum) and displaying the return value in a message
 ' box
 ReturnValue = gProject.Download(True, lgxGoOnline, lgxREMOTEPROG)
 MsgBox "Returned: " & ReturnValue
Exit Sub

errorHandler:
 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
End Sub
104 • RSLogix Automation Interface Reference Manual

Private Sub Text1_Click()
 ' Display the current name of the project in a text box.
 Text1.Text = gProject.FullName
 Text2.Text = gProject.Name
End Sub

'-------------------------
' Processor
'-------------------------

Private Sub Text3_Click()
 ' Set the processor’s reference to a global variable.
 Set gProcessor = gProject.Processor

 ' Display the current node in a text box.
 Text3.Text = gProcessor.Node
End Sub

Private Sub Command7_Click()
 ' Set the processor’s reference to a global variable.
 Set gProcessor = gProject.Processor

 ' Enable forces in the processor
 gProcessor.EnableForces
End Sub

'-------------------------
' Program Files Collection
'-------------------------

Private Sub Command8_Click()
 ' Set the current programfiles collection reference from the project
 ' to a global variable.
 Set gProgramFiles = gProject.ProgramFiles

 ' Add new ladder file into the ProgramFiles collection. This method
 ' call sets the gProgramFile object to a new ProgramFile object
 ' created at the file number specified by the value of text4.text,
 ' using the lgxLADDER enum to specify to create a ladder file,
 ' that is NOT a debug file, and ignoring all prompts.
 Set gProgramFile = gProgramFiles.Add(CInt(Text4.Text), lgxLADDER,
False, True)

End Sub

Private Sub Command9_Click()
 Dim ReturnValue As Boolean

 ' Set the current programfiles collection reference from the project
LadderFile object • 105

 ' to a global variable.
 Set gProgramFiles = gProject.ProgramFiles

 ' Remove the ProgramFile specified in the ext box from the
 ' ProgramFiles collection.
 ' Display the returned value in a message box.
 ReturnValue = gProgramFiles.Remove(CInt(Text4.Text), True)
 MsgBox "Returned: " & ReturnValue

End Sub

'-----------------------------
' ProgramFile Object
'-----------------------------

Private Sub Command10_Click()

 ' Set the current programfiles collection reference from the project
 ' to a global variable.
 Set gProgramFiles = gProject.ProgramFiles

 ' Set the programfile reference specified by the value of a textbox
 ' to the current global object.
 Set gProgramFile = gProgramFiles(CInt(Text4.Text))

End Sub

Private Sub Text5_Click()
 ' Assign the textboxes the Type and Name of the programfile.
 Text5.Text = gProgramFile.Type
 Text6.Text = gProgramFile.Name
End Sub

Private Sub Text6_Change()
 ' Change the ProgramFile.Name property to the current text.
 gProgramFile.Name = Text6.Text
End Sub

'------------------------
' LadderFile Object
'------------------------

Private Sub Command11_Click()
 ' Cast the current program object to a LadderFile object.
 Set gLadderFile = gProgramFile

End Sub

Private Sub Command12_Click()
 Dim ReturnValue As Boolean

106 • RSLogix Automation Interface Reference Manual

 ' Add a rung defined by user entered text and display the return
 ' value in a message box.
 ReturnValue = gLadderFile.InsertRungAsAscii(CInt(Text8.Text),
Text7.Text)
 MsgBox "Returned: " & ReturnValue
End Sub
LadderFile object • 107

108 • RSLogix Automation Interface Reference Manual

The Rung object represents a rung of ladder logic. Obtain the Rung object from
the LadderFile object using the GetRung method. You cannot create a separate
instance of the Rung object with the CreateObject function.

The following code example illustrates how you might access the Rung object.

Chapter Rung object

gRung = gLadderFile.GetRung(Rung_Number)
If gRung Is Nothing Then
 MsgBox "Rung not valid"
End If

Active
Application
Comment
DbaseID
EditsActive
EndRung
FileNumber
Modified
NumberOfInstructions
Online
Output
RungNumber
RungType
RungZoneDisplay
TempReplace
Title
Verified

-None-
Properties Methods Events

-None-
Rung object • 109

Properties
In most cases properties are characteristics or attributes of an object. Using a
property returns information about the object or causes a quality of the object
to change. The following properties define the Rung object.

This property returns whether or not this rung is active.

This property returns the Application object.

This property returns the rung comment associated with the rung.

This property returns the ID used to retrieve the rung title and comment from
the database.

This property returns whether or not this rung contains edits that are active in
the processor.

This property returns whether or not this is the end rung in the ladder file.

This property returns the number of the file in which this rung resides.

This property returns whether or not this rung has been modified in any way.

This property returns how many instructions there are on the rung.

Active Boolean - Read Only

Application Application - Read Only

Comment String - Read Only

DbaseID Long - Read Only

EditsActive Boolean - Read Only

EndRung Boolean - Read Only

FileNumber Long - Read Only

Modified Boolean - Read Only

NumberOfInstructions Long - Read Only
110 • RSLogix Automation Interface Reference Manual

This property returns whether or not the project containing this rung is
currently online with the processor.

This property returns whether or not there is an output instruction on this rung.

This property returns the number of the rung.

This property returns what type of rung the specified rung is.
Possible returned types are listed below and described in Appendix B.

(0) lgxPlainRung
(1) lgxReplaceRung
(2) lgxInsertRung
(3) lgxDeleteRung
(4) lgxEditRung

This property returns the type of rung adjustment (if any) that is currently
applied to the rung. Possible returned types are listed below and described in
Appendix B.

(0) lgxPlainRung
(1) lgxReplaceRung
(2) lgxInsertRung
(3) lgxDeleteRung
(4) lgxEditRung
(5) lgxTmpInsertRung
(6) lgxTmpReplaceRung
(7) lgxAnyIrdRung

Online Boolean - Read Only

Output Boolean - Read Only

RungNumber Long - Read Only

RungType lgxRungZoneTypes - Read Only

RungZoneDisplay lgxRungZoneTypes - Read Only
Rung object • 111

This property returns whether or not this is a temporary replacement rung
(marked with an R zone marker).

This property returns the rung title associated with the rung.

This property returns whether or not the rung has been verified.

Methods
There are no Methods defined for the Rung object.

Events
There are no Events defined for the Rung object.

Summary example

The following example automates functionality within RSLogix 5 with the
automation interface. Comments within the code are preceded by an
apostrophe ('). You’ll see that although the example is specific to RSLogix 5
software, it is generic enough to adapt to RSLogix 500 with only minor form
and comment alterations.

TempReplace Boolean - Read Only

Title String - Read Only

Verified Boolean - Read Only

Important This book assumes that you have the basic knowledge required to
work with forms and controls in Visual Basic.
112 • RSLogix Automation Interface Reference Manual

Form
The following form builds on previous examples in this book.
Rung object • 113

Code
'-----------------------------------
' Global variables
'-----------------------------------

Dim gApplication As RSLogix5.Application 'Application object
Dim gProject As RSLogix5.LogixProject 'LogixProject object
Dim gProcessor As RSLogix5.Processor 'Processor object
Dim gProgramFiles As RSLogix5.ProgramFiles 'ProgramFiles object
Dim gProgramFile As RSLogix5.ProgramFile 'ProgramFile object
Dim gLadderFile As RSLogix5.LadderFile 'LadderFile Object
Dim gRung As RSLogix5.Rung 'Rung Object

'-----------------------------------
' Application
'-----------------------------------

Private Sub Command1_Click()

 ' Set application object to the object returned from CreateObject.
 ' CreateObject is simply a method provided by Microsoft that creates
 ' a new registered COM application instance. In this case we start
 ' RSLogix 5 by using the "RSLogix5.Application" string.
 Set gApplication = CreateObject("RSLogix5.Application")
 ' At this point, if the CreateObject method functioned properly, the
 ' gApplication object is now a direct reference to the RSLogix5
 ' Object Model. Any properties or methods that we invoke on this
 ' object will immediately take effect in RSLogix.

 ' Immediately set the visible property of the application to 'True'
 gApplication.Visible = True

 ' Assign the AutoSaveInterval value to 3 minutes
 gApplication.AutoSaveInterval = 3

 ' Assign WindowState prop to lgxWindowStateMaximized enumeration
 gApplication.WindowState = lgxWindowStateMaximized

End Sub

Private Sub Command2_Click()
 ' Quit the application ignoring prompts and not saving changes.
 gApplication.Quit True, False
 ' Eliminate the reference to the application object
 Set gApplication = Nothing
End Sub

Private Sub Command3_Click()
On Error GoTo errorHandler
 ' Upload a project from the processor using the upload method of the
114 • RSLogix Automation Interface Reference Manual

 ' application object while ignoring prompts, NOT saving the previous
 ' file, creating new file from the upload (using lgxUploadCreateNew
 ' enum (see objectbrowser for more enumerations)), and going online
 ' (using the lgxGoOnline enum).
 ' Set the returned object reference to the gProject object.
 Set gProject = gApplication.Upload(True, False, lgxUploadCreateNew,
lgxGoOnline)
Exit Sub

errorHandler:
 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
End Sub

Private Sub Command4_Click()
 ' Get the currently open project in the application.
 Set gProject = gApplication.GetActiveProject
End Sub

'-------------------------------
' LogixProject
'-------------------------------

Private Sub Command5_Click()
 Dim ReturnValue As Boolean

 ' Save the currently open project, assign the return value to a
 ' variable and display that value in a message box.
 ReturnValue = gProject.Save(True, True)
 MsgBox "Returned: " & ReturnValue

End Sub

Private Sub Command6_Click()
On Error GoTo errorHandler
 Dim ReturnValue As Boolean

 ' Download the project to the current processor. This method call is
 ' ignoring all prompts, going online (using the lgxGoOnline enum),
 ' setting the processor to remote program mode (using the
 ' lgxREMOTEPROG enum) and displaying the return value in a message
 ' box
 ReturnValue = gProject.Download(True, lgxGoOnline, lgxREMOTEPROG)
 MsgBox "Returned: " & ReturnValue
Exit Sub

errorHandler:
 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
Rung object • 115

End Sub

Private Sub Text1_Click()
 ' Display the current name of the project in a text box.
 Text1.Text = gProject.FullName
 Text2.Text = gProject.Name
End Sub

'-------------------------
' Processor
'-------------------------

Private Sub Text3_Click()
 ' Set the processor’s reference to a global variable.
 Set gProcessor = gProject.Processor

 ' Display the current node in a text box.
 Text3.Text = gProcessor.Node
End Sub

Private Sub Command7_Click()
 ' Set the processor’s reference to a global variable.
 Set gProcessor = gProject.Processor

 ' Enable forces in the processor
 gProcessor.EnableForces
End Sub

'-------------------------
' Program Files Collection
'-------------------------

Private Sub Command8_Click()
 ' Set the current programfiles collection reference from the project
 ' to a global variable.
 Set gProgramFiles = gProject.ProgramFiles

 ' Add new ladder file into the ProgramFiles collection. This method
 ' call sets the gProgramFile object to a new ProgramFile object
 ' created at the file number specified by the value of text4.text,
 ' using the lgxLADDER enum to specify to create a ladder file,
 ' that is NOT a debug file, and ignoring all prompts.
 Set gProgramFile = gProgramFiles.Add(CInt(Text4.Text), lgxLADDER,
False, True)

End Sub

Private Sub Command9_Click()
 Dim ReturnValue As Boolean

 ' Set the current programfiles collection reference from the project
116 • RSLogix Automation Interface Reference Manual

 ' to a global variable.
 Set gProgramFiles = gProject.ProgramFiles

 ' Remove the ProgramFile specified in the ext box from the
 ' ProgramFiles collection.
 ' Display the returned value in a message box.
 ReturnValue = gProgramFiles.Remove(CInt(Text4.Text), True)
 MsgBox "Returned: " & ReturnValue

End Sub

'-----------------------------
' ProgramFile Object
'-----------------------------

Private Sub Command10_Click()

 ' Set the current programfiles collection reference from the project
 ' to a global variable.
 Set gProgramFiles = gProject.ProgramFiles

 ' Set the programfile reference specified by the value of a textbox
 ' to the current global object.
 Set gProgramFile = gProgramFiles(CInt(Text4.Text))

End Sub

Private Sub Text5_Click()
 ' Assign the textboxes the Type and Name of the programfile.
 Text5.Text = gProgramFile.Type
 Text6.Text = gProgramFile.Name

End Sub

Private Sub Text6_Change()
 ' Change the ProgramFile.Name property to the current text.
 gProgramFile.Name = Text6.Text

End Sub

'------------------------
' LadderFile Object
'------------------------

Private Sub Command11_Click()
 ' Cast the current program object to a LadderFile object.
 Set gLadderFile = gProgramFile

End Sub

Private Sub Command12_Click()

Rung object • 117

 Dim ReturnValue As Boolean

 ' Add a rung defined by user entered text and display the return
 ' value in a message box.
 ReturnValue = gLadderFile.InsertRungAsAscii(CInt(Text8.Text),
Text7.Text)
 MsgBox "Returned: " & ReturnValue
End Sub

'--------------------------
' Rung Object
'--------------------------

Private Sub Command13_Click()
 ' Set the global rung object to the rung number specified by a
 ' textbox.
 Set gRung = gLadderFile.GetRung(CInt(Text11.Text))

 ' Assign the rung title and comment property to their respective
 ' textboxes.
 Text9.Text = gRung.Title
 Text10.Text = gRung.Comment

End Sub
118 • RSLogix Automation Interface Reference Manual

The RevisionNotes object represents the revision notes associated with any
project. Obtain the RevisionNotes object from the LogixProject object via the
RevisionNotes property. The RevisionNotes object can not be created with the
CreateObject function.

The following commented code example illustrates how you might get all the
revision note information associated with a project. The example further adds
error checking and displays a message if nothing is returned.

Chapter RevisionNotes object

'This function calls RSLogix to get all Revision Note information
'from RSLogix
Private Function GetRevisionNotes()
'get the RevisionNotes object from the LogixProject Object
Set gRevisionNotes = gLogixProject.RevisionNotes
If gRevisionNotes Is Nothing Then
'if RSLogix fails to get the object then exit
 MsgBox "ERROR: Could not get Revision information",
vbExclamation, "ERROR 004"
 Exit Function
End If
End Function

Application
InternalRevision
Revision

-None-

Properties Methods Events
Count
RevisionNote
RevisionNotes object • 119

Properties
In most cases properties are characteristics or attributes of an object. Using a
property returns information about the object or causes a quality of the object
to change. The following properties define the RevisionNotes object.

This property returns the Application object.

This property returns the internal revision number of the parent project.
This revision number is incremental and does not roll over at 999,
but rather reflects the latest sequential revision of the project.

This property returns the revision of the project as reflected on the Revision
History/Editor dialog. This is a number between 0 and 999.

Methods
Using a method causes something to happen to an object. In most cases
methods are actions. Use any of the following methods to identify an action for
the RevisionNotes object to perform. Although written for the RSLogix 5
software product, the short examples following each method may be easily
adapted to RSLogix 500. For example, type definitions may vary between
products, and those differences must be considered when adapting code to the
RSLogix 500 object model.

Use this method to read how many revision notes have been saved with the
project.

Syntax
Count() As Integer

Returns
If successful the number of revision notes is returned.

Example
The following code snippet displays the number of revision notes associated
with your project.

Application Application - Read Only

InternalRevision Integer - Read Only

Revision Long - Read Only

Count Integer
120 • RSLogix Automation Interface Reference Manual

MsgBox "There are " & gRevisionNotes.Count & " revision notes."

Use this method to return the text of a revision note associated with a project
by providing the number of the revision note.

Syntax
RevisionNote(NoteNumber As Long) As String

Arguments
NoteNumber - The number of a specific revision note in the project.

Returns
If successful the specified revision note text string is returned.

Example
The following code snippet returns the text of the first revision note saved with
the project.
Dim value as String
value = gRevisionNotes.RevisionNote(0)

Events
There are no events defined for the RevisionNotes object.

Summary example

The following example automates functionality within RSLogix 5 with the
automation interface. Comments within the code are preceded by an
apostrophe ('). You’ll see that although the example is specific to RSLogix 5
software, it is generic enough to adapt to RSLogix 500 with only minor form
and comment alterations.

RevisionNote String

Important This book assumes that you have the basic knowledge required to
work with forms and controls in Visual Basic.
RevisionNotes object • 121

Form
The following form builds on previous examples in this book.

Code
'-----------------------------------
' Global variables
'-----------------------------------

Dim gApplication As RSLogix5.Application 'Application object
Dim gProject As RSLogix5.LogixProject 'LogixProject object
Dim gRevisionNotes As RSLogix5.RevisionNotes 'RevisionNotes Object

'-----------------------------------
' Application
'-----------------------------------

Private Sub Command1_Click()

 ' Set application object to the object returned from CreateObject.
 ' CreateObject is simply a method provided by Microsoft that creates
 ' a new registered COM application instance. In this case we start
 ' RSLogix 5 by using the "RSLogix5.Application" string.
122 • RSLogix Automation Interface Reference Manual

 Set gApplication = CreateObject("RSLogix5.Application")
 ' At this point, if the CreateObject method functioned properly, the
 ' gApplication object is now a direct reference to the RSLogix5
 ' Object Model. Any properties or methods that we invoke on this
 ' object will immediately take effect in RSLogix.

 ' Immediately set the visible property of the application to 'True'
 gApplication.Visible = True

 ' Assign the AutoSaveInterval value to 3 minutes
 gApplication.AutoSaveInterval = 3

 ' Assign WindowState prop to lgxWindowStateMaximized enumeration
 gApplication.WindowState = lgxWindowStateMaximized
End Sub

Private Sub Command2_Click()
 ' Quit the application ignoring prompts and not saving changes.
 gApplication.Quit True, False
 ' Eliminate the reference to the application object
 Set gApplication = Nothing
End Sub

Private Sub Command3_Click()
On Error GoTo errorHandler
 ' Upload a project from the processor using the upload method of the
 ' application object while ignoring prompts, NOT saving the previous
 ' file, creating a new file from the upload (using the
 ' lgxUploadCreateNew enum (see the objectbrowser for more
 ' enumerations)), and go online (using the lgxGoOnline enum).
 ' Set the returned object reference to the gProject object.
 Set gProject = gApplication.Upload(True, False, lgxUploadCreateNew,
lgxGoOnline)
Exit Sub

errorHandler:
 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
End Sub

Private Sub Command4_Click()
 ' Get the currently open project in the application.
 Set gProject = gApplication.GetActiveProject
End Sub
RevisionNotes object • 123

'-------------------------------
' LogixProject
'-------------------------------

Private Sub Command5_Click()
 Dim returnValue As Boolean

 ' Save the currently open project, assign the return value to a
 ' variable and display that value in a message box.
 returnValue = gProject.Save(True, True)
 MsgBox "Returned: " & returnValue
End Sub

Private Sub Command6_Click()
On Error GoTo errorHandler
 Dim returnValue As Boolean

 ' Download the project to the current processor. This method call is
 ' ignoring all prompts, going online (using the lgxGoOnline enum),
 ' setting the processor to remote program mode (using the
 ' lgxREMOTEPROG enum) and displaying the return value in a message
 ' box
 returnValue = gProject.Download(True, lgxGoOnline, lgxREMOTEPROG)
 MsgBox "Returned: " & returnValue
Exit Sub

errorHandler:
 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
End Sub

Private Sub Text1_Click()
 ' Display the current name of the project in a text box.
 Text1.Text = gProject.FullName
 Text2.Text = gProject.Name
End Sub

'-----------------------------
' RevisionNotes
'-----------------------------

Private Sub Command7_Click()
On Error GoTo errhand
 ' Set the current revision notes object to a global variable.
 Set gRevisionNotes = gProject.RevisionNotes

 ' Query a user specified revision note and place the returned text
 ' within another textbox.
 Text4.Text = gRevisionNotes.RevisionNote(CInt(Text3.Text))
Exit Sub
124 • RSLogix Automation Interface Reference Manual

errhand:
 MsgBox "That revision note was not found."
End Sub
RevisionNotes object • 125

126 • RSLogix Automation Interface Reference Manual

The ReportOptions object represents the report settings associated with the
project. Obtain the ReportOptions object from the LogixProject object via the
ReportOptions property. You cannot create an instance of the ReportOptions
object with the CreateObject function.

Chapter ReportOptions object

AddressSymbols
Application
ChannelConfiguration
CrossReference
CrossReferenceByAddress
CrossReferenceFileEnd
CrossReferenceFileStart
CrossReferenceSymbolEnd
CrossReferenceSymbolStart
CustomDataMonitorFileRange
CustomDataMonitorFiles
DataFileList
DataFileRange
DataFiles
InstructionComments
IOInfo
MemoryUsage
MemoryUsageFileRange
Multipoint (RSLogix 500 only)
ProcessorInfo
ProgramFileList
ProgramFileRange
ProgramFiles
SymbolGroups
TitlePage

-None-
Properties Methods Events

-None-
ReportOptions object • 127

The following commented code example illustrates how to access the Report
Options object.

Properties
In most cases properties are characteristics or attributes of an object. Using a
property returns information about the object or causes a quality of the object
to change. The following properties define the ReportOptions object.

If set to True the Address/Symbol Report is selected for inclusion in your
printed project report. The Address/Symbol Report provides address, symbol,
scope and description information for the addresses in the report.

This property returns the Application object.

If set to True the Channel Configuration Report is selected for inclusion in
your printed project report. The Channel Configuration Report contains
information about how the processor’s channels have been configured to
communicate.

If set to True the Cross Reference Report is selected for inclusion in your
printed project report. The Cross Reference Report tells you in which files and
rungs the addresses in your project are being used.

Set gReportOptions = gLogixProject.ReportOptions
'get a copy of the Report options object
If gReportOptions Is Nothing Then
'if the copy failed then display an error and exit
 MsgBox "Error Getting Report options!", vbExclamation, "ERROR"
 Exit Function
End Sub

AddressSymbols Boolean - Read/Write

Application Application - Read Only

ChannelConfiguration Boolean - Read/Write

CrossReference Boolean - Read/Write
128 • RSLogix Automation Interface Reference Manual

If set to True the Cross Reference Report that you have selected to print will
be sorted by address. The sorted listing is of the addresses used in your project,
how they are being used, and the location of each address. The list is sorted by
data tables. If set to False the Cross Reference Report will be sorted by symbol.

This property sets or returns the ending address for inclusion in the cross
reference report. This corresponds to the Cross Reference Range which
defaults to include all possible data table addresses in the project (data table
addresses from 0-255). If you want only certain data table addresses included
in the cross reference report, indicate the ending address using this property.

This property sets or returns the starting address for inclusion in the cross
reference report. This corresponds to the Cross Reference Range which
defaults to include all possible data table addresses in the project (data table
addresses from 0-255). If you want only certain data table addresses included
in the cross reference report, indicate the starting address using this property.

This property sets or returns the ending symbol for inclusion in the cross
reference report. This corresponds to the Cross Reference Range which
defaults to include all possible data table addresses in the project (data table
symbols from A-ZZ). If you want only certain data table addresses included in
the cross reference report, indicate the ending symbol using this property.

This property sets or returns the starting symbol for inclusion in the cross
reference report. This corresponds to the Cross Reference Range which
defaults to include all possible data table addresses in the project (data table
symbols from A-ZZ). If you want only certain data table addresses included in
the cross reference report, indicate the starting symbol using this property.

CrossReferenceByAddress Boolean - Read/Write

CrossReferenceFileEnd String - Read/Write

CrossReferenceFileStart String - Read/Write

CrossReferenceSymbolEnd String - Read/Write

CrossReferenceSymbolStart String - Read/Write
ReportOptions object • 129

This range specifies which CDM files are to be printed. The format can be any
of the following:

File numbers separated by a comma: “2,5,10”
File number range separated by a dash: “2-12”
A combination of both: “2,3,5-12,25”
Text specifying all files: “ALL”

If set to True the Custom Data Monitor Report is selected for inclusion in your
printed project report. A CDM report provides you with a list of the addresses
in the Custom Data Monitor, their symbols, and the current value of the bit or
word address. By default all CDM files are selected for your report. Use
CustomDataMonitorFileRange to selectively define the CDM files for
inclusion.

If set to True a list of the data files in the project will be included in your printed
report.

This range specifies which data files are selected for inclusion in your printed
project report. The format can be any of the following:

File numbers separated by a comma: “2,5,10”
File number range separated by a dash: “2-12”
A combination of both: “2,3,5-12,25”
Text specifying all files: “ALL”

If set to True the Data Files Report is included in your project reports. By
default all the data files in your project are selected for your report. Use
DataFileRange to selectively define the data files for inclusion.

If set to True the Instruction Comments Report is selected for inclusion in your
printed project report. This report contains all the instruction comments
defined in the database.

CustomDataMonitorFileRange String - Read/Write

CustomDataMonitorFiles Boolean - Read/Write

DataFileList Boolean - Read/Write

DataFileRange String - Read/Write

DataFiles Boolean - Read/Write

InstructionComments Boolean - Read/Write
130 • RSLogix Automation Interface Reference Manual

If set to True the IO Configuration Report is selected for inclusion in your
printed project reports. The IO Configuration Report contains information
about the IO modules assembled in your system configuration. Slot #, Part #,
description information and the number of input and output words used in
each module are included.

If set to True the Memory Usage Report is selected for inclusion in your printed
project report. The Memory Usage Report provides information about which
addresses are used in your project and how they are used. By default all your
data files will be included in the Memory Usage report. To individually select
data files for inclusion in this report also use the MemoryUsageFileRange
property.

This specifies which data file addresses are to be included in the Memory Usage
report in your printed project report by providing a numeric range. The format
can be any of the following:

File numbers separated by a comma: “2,5,10”
File number range separated by a dash: “2-12”
A combination of both: “2,3,5-12,25”
Text specifying all files: “ALL”

If set to True the Multipoint Monitor will be included in the report.

If set to True the Processor Information Report is selected for inclusion in
your printed project reports. The Processor report includes type, memory
used and file content

If set to True a Program File List Report is selected for inclusion in your
printed project reports.

IOInfo Boolean - Read/Write

MemoryUsage Boolean - Read/Write

MemoryUsageFileRange String - Read/Write

Multipoint Boolean - Read/Write

ProcessorInfo Boolean - Read/Write

ProgramFileList Boolean - Read/Write

(500 only)
ReportOptions object • 131

This range specifies which program files are selected for inclusion in your
printed project reports. The format may be any of the following:

File numbers separated by a comma: “2,5,10”
File number range separated by a dash: “2-12”
A combination of both: “2,3,5-12,25”
Text specifying all files: “ALL”

If set to True the Program Files Report is included in your project reports. Use
ProgramFileRange to further define the program files for inclusion.

If set to True the Symbol Groups Report is selected for inclusion in your
printed project report. This report contains the group name and description for
all the symbol groups defined in the documentation database.

If set to True a Title Page will be included in your printed project report. This
title page is not customizable via the automation interface. It will by default
include your project name and the Rockwell Software RSLogix application
logo.

Methods
There are no methods defined for the ReportOptions object.

Events
There are no events defined for the ReportOptions object.

ProgramFileRange String - Read/Write

ProgramFiles Boolean - Read/Write

SymbolGroups Boolean - Read/Write

TitlePage Boolean - Read/Write
132 • RSLogix Automation Interface Reference Manual

Summary example

The following example automates functionality within RSLogix 5 with the
automation interface. Comments within the code are preceded by an
apostrophe ('). You’ll see that although the example is specific to RSLogix 5
software, it is generic enough to adapt to RSLogix 500 with only minor form
and comment alterations.

Form
The following form builds on previous examples in this book.

Code
'-----------------------------------
' Global variables
'-----------------------------------

Dim gApplication As RSLogix5.Application 'Application object
Dim gProject As RSLogix5.LogixProject 'LogixProject object
Dim gReportOptions As RSLogix5.ReportOptions 'ReportOptions Object

Important This book assumes that you have the basic knowledge required to
work with forms and controls in Visual Basic.
ReportOptions object • 133

'-----------------------------------
' Application
'-----------------------------------

Private Sub Command1_Click()

 ' Set the application object to object returned from CreateObject.
 ' CreateObject is simply a method provided by Microsoft that creates
 ' a new registered COM application instance. In this case we start
 ' RSLogix 5 by using the "RSLogix5.Application" string.
 Set gApplication = CreateObject("RSLogix5.Application")
 ' At this point, if the CreateObject method functioned properly, the
 ' gApplication object is now a direct reference to the RSLogix5
 ' Object Model. Any properties or methods that we invoke on this
 ' object will immediately take effect in RSLogix.

 ' Immediately set the visible property of the application to 'True'
 gApplication.Visible = True

 ' Assign the AutoSaveInterval value to 3 minutes
 gApplication.AutoSaveInterval = 3

 ' Assign WindowState prop to lgxWindowStateMaximized enumeration
 gApplication.WindowState = lgxWindowStateMaximized

End Sub

Private Sub Command2_Click()
 ' Quit the application ignoring prompts and not saving changes.
 gApplication.Quit True, False
 ' Eliminate the reference to the application object
 Set gApplication = Nothing
End Sub

Private Sub Command3_Click()
On Error GoTo errorHandler
 ' Upload a project from the processor using the upload method of the
 ' application object while ignoring prompts, NOT saving the previous
 ' file, create a new file from the upload (using lgxUploadCreateNew
 ' enum (see the objectbrowser for more enumerations)), and going
 ' online (using the lgxGoOnline enum).
 ' Set the returned object reference to the gProject object.
 Set gProject = gApplication.Upload(True, False, lgxUploadCreateNew,
lgxGoOnline)
Exit Sub

134 • RSLogix Automation Interface Reference Manual

errorHandler:
 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
End Sub

Private Sub Command4_Click()
 ' Get the currently open project in the application.
 Set gProject = gApplication.GetActiveProject
End Sub

'-------------------------------
' LogixProject
'-------------------------------

Private Sub Command5_Click()
 Dim ReturnValue As Boolean

 ' Save the currently open project, assign the return value to a
 ' variable and display that value in a message box.
 ReturnValue = gProject.Save(True, True)
 MsgBox "Returned: " & ReturnValue

End Sub

Private Sub Command6_Click()
On Error GoTo errorHandler
 Dim ReturnValue As Boolean

 ' Download the project to the current processor. This method call is
 ' ignoring all prompts, going online (using the lgxGoOnline enum),
 ' setting the processor to remote program mode (using the
 ' lgxREMOTEPROG enum) and displaying the return value in a message
 ' box
 ReturnValue = gProject.Download(True, lgxGoOnline, lgxREMOTEPROG)
 MsgBox "Returned: " & ReturnValue
Exit Sub

errorHandler:
 ' Upon a caught error decide what to do.
 MsgBox "Error: " & Err.Number & vbCrLf & "Description: " &
Err.Description
End Sub

Private Sub Text1_Click()
 ' Display the current name of the project in a text box.
 Text1.Text = gProject.FullName
ReportOptions object • 135

 Text2.Text = gProject.Name
End Sub

'-----------------------------
' ReportOptions
'-----------------------------

Private Sub Command7_Click()
 Dim ReturnValue As Boolean

 ' Set the current ReportOptions object to a global variable.
 Set gReportOptions = gProject.ReportOptions

 ' Print the current project with all reporting options enabled.
 gReportOptions.AddressSymbols = True
 gReportOptions.ChannelConfiguration = True
 gReportOptions.CrossReference = True
 gReportOptions.CustomDataMonitorFiles = True
 gReportOptions.DataFileList = True
 gReportOptions.DataFiles = True
 gReportOptions.InstructionComments = True
 gReportOptions.IOInfo = True
 gReportOptions.MemoryUsage = True
 gReportOptions.ProcessorInfo = True
 gReportOptions.ProgramFileList = True
 gReportOptions.ProgramFiles = True
 gReportOptions.SymbolGroups = True
 gReportOptions.TitlePage = True
 ' Print the report via the project object and display the return
 ' value in a messagebox.
 ReturnValue = gProject.PrintReport(True)
 MsgBox "Returned: " & ReturnValue

End Sub
136 • RSLogix Automation Interface Reference Manual

The AddrSymRecords collection represents the collection of Address/Symbol
database records (AddrSymRecord) in the RSLogix project. The
AddrSymRecords collection can be obtained using the AddrSymRecords
property of the LogixProject object. The AddrSymRecords collection is not
creatable with the CreateObject function.

The following commented code example illustrates how you might get the
AddrSymRecords collection from the LogixProject object. This example adds
error checking and notification.

Chapter AddrSymRecords
collection

'get the AddrSymRecords collection from the LogixProject object
Set gAddrSymRecords = gLogixProject.AddrSymRecords
'if Logix failed to get the Address/Symbols collection then display
'error and exit
If gAddrSymRecords Is Nothing Then
 MsgBox "ERROR: Could not get Address Symbol Records!",
 vbExclamation, "ERROR"
 Exit Function
End If

Application
Count

-None-
Properties Methods Events

Add
Duplicate
GetRecordIndexViaAddrOrSym
GetRecordViaAddrOrSym
GetRecordViaDesc
GetRecordViaIndex
RemoveRecordViaAddrOrSym
RemoveRecordViaIndex
SearchAndReplaceDesc
AddrSymRecords collection • 137

Properties
In most cases properties are characteristics or attributes of an object. Using a
property returns information about the object or causes a quality of the object
to change. The following properties define the AddrSymRecords collection.

This property returns an Application that represents the RSLogix application.

This property returns the number of records in the Address/Symbol database.

Methods
Using a method causes something to happen to an object. In most cases
methods are actions. Use any of the following methods to identify an action for
the AddrSymRecords collection to perform. Although written for the RSLogix
5 software product, the short examples following each method may be easily
adapted to RSLogix 500. For example, type definitions may vary between
products, and those differences must be considered when adapting code to the
RSLogix 500 object model.

Use this method to create a new address/symbol record and add it to the
AddrSymRecords collection.

Syntax
Add() as AddrSymRecord

Returns
If successful the Address Symbol database record is created and added to the
Address/Symbol Database Record collection. If unsuccessful, nothing is
returned.

Example
The following code snippet makes the call to RSLogix to add an Address/
Symbol database record to the Address/Symbol database record collection.
Set gAddrSymRecord = gAddrSymRecords.Add();

Application Application - Read Only

Count Long - Read Only

Add AddrSymRecord
138 • RSLogix Automation Interface Reference Manual

.

Use this method to create a new record for an address/symbol with the record
information of an address/symbol that is currently in the database. This is used
as a shortcut to assign similar properties without having to retype information.

Syntax
Duplicate(SourceAddressOrSymbol as String, Scope as Integer, NewAddressOrSymbol as
String) As AddrSymRecord

Arguments
SourceAddressOrSymbol - The String used to identify the source address/symbol
record.
Scope - The program file number that is local to the record. 0 is global
NewAddressOrSymbol - The String used to identify the new address/symbol
record.

Returns
If successful, the duplicate record is returned. If unsuccessful Nothing is
returned.

Example
The following code snippet shows both a valid and an invalid address/symbol
record duplication request.
gAddrSymRecord = gAddrSymRecords.Duplicate("B3:0", "B3:1")
gAddrSymRecord = gAddrSymRecords.Duplicate("B3:0", "TEST")
 'The line above will return Nothing because of mixed
 'parameters (See Important Note in Duplicate description.)

Use this method to return the current Address/Symbol database record
collection index indicated by either the address or symbol, and scope.

Syntax
GetRecordIndexViaAddrOrSym (AddressOrSymbol as String, Scope as Integer) as
Long

Duplicate AddrSymRecord

Important If your source string is an address your new string must be an
address. If your source string is a symbol, your new string must be a
symbol.

GetRecordIndexViaAddrOrSym Long
AddrSymRecords collection • 139

Arguments
AddressOrSymbol - The String used to identify the source address/symbol
record.
Scope - An integer that represents the file that is local to the symbol of the
AddrSymRecord. A scope of 0 indicates that the symbol is global. If
AddressOrSymbol is an address, use 0 for the scope.

Returns
If successful the index of the Address/Symbol database collection record is
returned. If unsuccessful (-1) is returned.

Example
The following code snippet returns the index of the address B3:0.
Dim Index As Long
Index = gAddrSymRecords.GetRecordIndexViaAddrOrSym ("B3:0",0)

Use this method to return the current Address/Symbol database record
indicated by either the address, symbol, and the scope.

Syntax
GetRecordViaAddrOrSym (AddressOrSymbol as String, Scope as Integer) as
AddrSymRecord

Arguments
AddressOrSymbol - The string that contains the address or the symbol of the
Address/Symbol database record that is to be retrieved.
Scope - The program file number that is local to the record. 0 is global. If
AddressOrSymbol is an address, use 0 for the scope.

Returns
If successful, the indicated Address/Symbol database collection record is
returned. If unsuccessful Nothing is returned

Example
The following code snippet returns the Address/Symbol database record for
B3:0.
gAddrSymRecord = gAddrSymRecords. GetRecordViaAddrOrSym ("B3:0”,0)

Use this method to return the next Address/Symbol database record whose
description contains the search string.

GetRecordViaAddrOrSym AddrSymRecord

GetRecordViaDesc AddrSymRecord
140 • RSLogix Automation Interface Reference Manual

Syntax
GetRecordViaDesc(StartingIndex as Long, DescriptionSearchString as String,
CaseSensitive as Boolean, Wrap as Boolean) as AddrSymRecord

Arguments
StartingIndex - The zero-based index to start the search from. If the Address/
Symbol database had 100 records, 0-99 would be the legal range for the starting
index. This argument is passed by reference – you must specify it as a Long, not
as an immediate.
DescriptionSearchString - The string that will be searched for in the Address/
Symbol database record descriptions.
CaseSensitive - If set to True, the case of any letters in the
DescriptionSearchString will be used to filter the search.
Wrap - If set to True, the search wraps past the last index of the database and
will continue the search from index 0 to StartingIndex -1.

Returns
If successful, the indicated Address/Symbol database collection record is
returned; if unsuccessful Nothing is returned. The StartingIndex will return the
index of the AddrSymRecord that was found.

Example
The following call will perform a case-sensitive search from record 10 for a
description that contains PLC-5. If the search reaches the end of the database,
the search stops. It will not wrap back to record 0.
Dim Index As Long
Index = 10
gAddrSymRecord = gAddrSymRecords.GetRecordViaDesc(Index, "PLC-5",
True, False)

Use this method to return the current Address/Symbol database record
indicated by the zero-based index.

Syntax
GetRecordViaIndex(Index as Long) As AddrSymRecord

Arguments
Index - The zero-based index that contains the address or the symbol of the
Address/Symbol database record that is to be retrieved. If the Address/Symbol
database had 100 records, 0-99 would be the legal range for the index. The
number of records in the database can be found with the count property.

GetRecordViaIndex AddrSymRecord
AddrSymRecords collection • 141

Returns
If successful, the indicated Address/Symbol database collection record is
returned. If unsuccessful Nothing is returned.

Example
The following code snippet returns the Address/Symbol database record by
providing the index identified as 123.
gAddrSymRecord = gAddrSymRecords.GetRecordViaIndex(123)

Use this method to remove the current Address/Symbol database record
indicated by either the address, symbol, and the scope.

Syntax
RemoveRecordViaAddrOrSym(AddressOrSymbol as String, Scope as Integer) as
Boolean

Arguments
AddressOrSymbol - The string that contains the address or the symbol of the
Address/Symbol database record that is to be retrieved.
Scope - The program file number that is local to the record. 0 is global. If your
AddressOrSymbol string is an address, use a scope of 0.

Returns
If successful, the indicated Address/Symbol database collection record is
removed and True is returned. If unsuccessful False is returned

Example
The following code snippet removes the Address/Symbol database record for
B3:0.

Dim Result As Boolean
Result = gAddrSymRecords.RemoveRecordViaAddrOrSym ("B3:0",0)

Use this method to remove the current Address/Symbol database record
indicated by zero-based index.

Syntax
RemoveRecordViaIndex(Index as Long) As Boolean

RemoveRecordViaAddrOrSym Boolean

RemoveRecordViaIndex Boolean
142 • RSLogix Automation Interface Reference Manual

Arguments
Index - The zero-based index that contains the address or the symbol of the
Address/Symbol database record that is to be retrieved. If the Address/Symbol
database had 100 records, 0-99 would be the legal range for the index. The
number of records in the database can be found with the count property.

Returns
If successful, the indicated Address/Symbol database collection record is
removed and a value of True is returned. If unsuccessful False is returned.

Example
The following code snippet removes the Address/Symbol database record by
providing the index identified as 123.
Dim Result as Boolean
Result = gAddrSymRecords.RemoveRecordViaIndex(123)

Use this method to replace text in the description of the next Address/Symbol
database record whose descriptions contains the search string.

Syntax
SearchAndReplaceDesc(StartingIndex as Long, DescriptionSearchString as String,
DescriptionReplaceString as String, CaseSensitive as Boolean, Wrap as Boolean,
ReplaceAll as Boolean) as Long

Arguments
StartingIndex - The zero based index to start the search from. If the Address/
Symbol database had 100 records, 0-99 would be the legal range for the starting
index. This argument is passed by reference – you must specify it as a Long,
not as an immediate.
DescriptionSearchString - The string that will be searched for in the Address/
Symbol database record descriptions.
DescriptionReplaceString - The string that will replace any description search
strings that are located.
CaseSensitive - If set to True, the case of any letters in the
DescriptionSearchString will be used to filter the search.
Wrap - If set to True the search wraps past the last index of the database and
continues from the beginning until a match is found or the current record's
index matches the starting index. This parameter is ignored if ReplaceAll is
True.

SearchAndReplaceDesc Long
AddrSymRecords collection • 143

ReplaceAll - If set to True all of the instances of the DescriptionSearchString will
be replaced throughout all of the descriptions in the Address/Symbol database.
If ReplaceAll is set, the Wrap parameter is ignored.

Returns
The number of Address/Symbol database collection record descriptions that
were changed is returned. The StartingIndex will return the index of the last
AddrSymRecord where a replace had occurred.

Example
The following call performs a non case-sensitive search and replace from
record 10 for a description that contains “test” and replace “test” with
“Debug.” Since ReplaceAll is not True there will be only one replacement if
there are any. If the search reaches the end of the database, the search will wrap
back to record 0 and continue searching until either a match is found or the
StartingIndex is reached.
Dim Index as Long
Index = 10
NumberOfReplacedDescriptions As Long
NumberOfReplacedDescriptions = gAddrSymRecords. SearchAndReplaceDesc
(Index, "test", "Debug", False, True, False)

Events
No events have been defined for the AddrSymRecords collection.
144 • RSLogix Automation Interface Reference Manual

The AddrSymRecord object represents an Address/Symbol database record in
the RSLogix project. Use it to return or set a value in any field. The
AddrSymRecord object is obtained from the AddrSymRecords collection via
the Add, GetRecord, and GetRecordViaDesc methods. You cannot create a
new instance of a AddrSymRecord object with the CreateObject function.

The following commented code example illustrates how you might access the
AddrSymRecord object.

Chapter AddrSymRecord object

Private Sub Form_Load()
Set gAddrSymRecords = gProject.AddrSymRecords
Set gAddrSymRecord = gAddrSymRecords.Add()
If gAddrSymRecord Is Nothing Then
'if the AddrSymRecord object does not exist then display an error
 MsgBox "Error getting Address Symbol record"
End If

Above
Address
Application
Below
Description
DeviceCode
Scope
Symbol
SymbolGroup

-None-
Properties Methods Events

SetAbove
SetAddress
SetBelow
SetDescription
SetDeviceCode
SetScope
SetSymbol
SetSymGroup
AddrSymRecord object • 145

Properties
In most cases properties are characteristics or attributes of an object. Using a
property returns information about the object or causes a quality of the object
to change. The following properties define the AddrSymRecord object.

This property returns a text string (the Above string) from the
AddrSymRecord. The Above string appears above an I/O point in a RSWire
schematic diagram...

This property returns a string that identifies the address of the
AddrSymRecord.

This property returns an Application object that represents the RSLogix
application.

This property returns a text string (the Below string) from the AddrSymRecord.
The Below string appears below an I/O point in a RSWire schematic diagram.

This property returns a string that identifies the description in the
AddrSymRecord.

This property returns a string that identifies the device code in the
AddrSymRecord. Device codes correspond to device names in the PLC/SLC
database and to device drawings in the RSWire I/O Builder database. Only
I/O addresses may have device codes.

Above String - Read Only

Address String - Read Only

Application Application - Read Only

Below String - Read Only

Description String - Read Only

DeviceCode String - Read Only
146 • RSLogix Automation Interface Reference Manual

This property returns a long value that identifies the scope of the
AddrSymRecord. 0 is global. Numbers 1-1999 represent the local program file
number.

This property returns a string that identifies the symbol of the
AddrSymRecord.

This property returns a string that identifies name of the symbol group of the
AddrSymRecord. An empty string indicates that the AddrSymRecord is not the
member of a symbol group.

Methods
Using a method causes something to happen to an object. In most cases
methods are actions. Use any of the following methods to identify an action for
the AddrSymRecord object to perform. Although written for the RSLogix 5
software product, the short examples following each method may be easily
adapted to RSLogix 500. For example, type definitions may vary between
products, and those differences must be considered when adapting code to the
RSLogix 500 object model.

Use this method to set the Above field of an AddrSymRecord. RSLogix uses
this string to export to RSWire I/O Builder where it is placed above the device
drawing on the resulting I/O schematic generated by RSWire.

Syntax
SetAbove(AboveString As String) as Boolean

Arguments
AboveString - The ASCII string (up to 9 characters) that will be used to set the
Above field of the AddrSymRecord.

Scope Long - Read Only

Symbol String - Read Only

SymbolGroup String - Read Only

SetAbove Boolean
AddrSymRecord object • 147

Returns
If successful the Above string is added to the AddrSymRecord and True is
returned. If unsuccessful False is returned. The device code must be set before
this member will work successfully.

Example
The following code snippet makes the call to set the Above field of the
AddrSymRecord.
Result As Boolean
Result = gAddrSymRecord.SetAbove("abovetext")

Use this method to set the address of an AddrSymRecord.

Syntax
SetAddress(Address as String) as Boolean

Arguments
Address - The ASCII string that identifies the address that the AddrSymRecord
will be set to.

Returns
If successful True is returned; if unsuccessful False is returned.

Example
The following code snippet makes the call to RSLogix to set the address of
AddrSymRecord.
Result As Boolean
Result = gAddrSymRecord.SetAddress("B3:0")

Use this method to set the Below field of an AddrSymRecord. RSLogix uses
this string to export to RSWire I/O Builder where it is placed below the device
drawing on the resulting I/O schematic generated by RSWire.

Syntax
SetBelow(BelowString As String) as Boolean

Arguments
BelowString - The ASCII string (up to 9 characters) that will be used to set the
Below field of the AddrSymRecord.

SetAddress Boolean

SetBelow Boolean
148 • RSLogix Automation Interface Reference Manual

Returns
If successful the Below string is added to the AddrSymRecord and True is
returned. If unsuccessful False is returned. The device code must be set before
this member will return successfully.

Example
The following code snippet makes the call to set the Below field of the
AddrSymRecord to “Test.”
Result As Boolean
Result = gAddrSymRecord.SetBelow("TEST")

Use this method to set the description field of the AddrSymRecord. All
instructions having the same address will automatically have the same
description.

Syntax
SetDescription(Description as String) as Boolean

Arguments
Description - The ASCII string that identifies the description to set for the
AddrSymRecord. The length of this string is limited to the
MaxDescriptionLineLength property of the Application Object.

Returns
If successful the description string is added to the AddrSymRecord and True is
returned; if unsuccessful False is returned.

Example
The following code snippet makes the call to set the description of the
AddrSymRecord to “Test Description.”
Result As Boolean
Result = gAddrSymRecord.SetDescription("Test Description")

Use this method to set the device code of an AddrSymRecord. The device code
is used in wiring diagrams created in the RSWire software package.

Syntax
SetDeviceCode(DeviceCode as String) as Boolean

SetDescription Boolean

SetDeviceCode Boolean
AddrSymRecord object • 149

Arguments
DeviceCode - The device code that represents the I/O point device code type.
Note: this is only available to AddrSymRecord types that have an input or
output address. Any 11 character string will be accepted.
A valid list of device code strings for inputs and outputs follows.

Returns
If successful the device code is set and a value of True is returned; if
unsuccessful False is returned.

Input Device Codes
2KNCL 3SSNCL MMPNCA PBNCO
2KNCM 3SSNCM MMPNCG PBNCR
2KNCR 3SSNCR MMPNCR PBNCY
2KNOL 3SSNOL MMPNOA PBNOB
2KNOM 3SSNOM MMPNOG PBNOE
2KNOR 3SSNOR MMPNOR PBNOG
2SSNCL CRNC MOPNCA PBNOK
2SSNCM CRNO MOPNCG PBNOO
2SSNCR FSNC MOPNCR PBNOR
2SSNOL FSNO MOPNOA PBNOR
2SSNOM FTSMNC MOPNOG PBNOY
2SSNOR FTSMNO MOPNOR PENC
3KNCC FTSSNC NCTC PENO
3KNCL FTSSNO NCTO PRXNC
3KNCM LSHC NOTC PRXNO
3KNCR LSHO NOTO PSNC
3KNOC LSNC PBNCB PSNO
3KNOL LSNO PBNCE SPIN
3KNOM MCRNC PBNCG TSNC
3KNOR MCRNO PBNCK TSNO

Output Device Codes
CNCOIL PLTG SPOT
CRCOIL PLTR SSOL
DSOIL PLTW TMCOIL
MTPLTA PTPLTA TRCOIL
MTPLTB PTPLTB TSOL
MTPLTC PTPLTC WBA
MTPLTG PTPLTG WBB
MTPLTR PTPLTR WBG
MTPLTW PTPLTW WBL
PLTA RCOIL WBR
PLTB SIZEO WBZ
PLTC SIZER
150 • RSLogix Automation Interface Reference Manual

Example
The following code snippet makes the call to RSLogix to set the output device
code for the AddrSymRecord to “SPOT.”
Result As Boolean
Result = gAddrSymRecord.SetDeviceCode("SPOT")

Use this method to set the local program file of the AddrSymRecord.

Syntax
SetScope(Scope as Long) as Boolean

Arguments
Scope - A Long that represents the file that is local to the symbol of the
AddrSymRecord. A scope of 0 indicates that the symbol is global.

Returns
If successful True is returned. If unsuccessful False is returned.

Example
The following code snippet makes the call to set the scope of AddrSymRecord.
Result As Boolean
Result = gAddrSymRecord.SetScope(0) 'Makes the gAddrSymRecord global

Use this method to set the symbol of an AddrSymRecord.

Syntax
SetSymbol(Symbol as String) as Boolean

Arguments
Symbol - The string that contains the symbol that the AddrSymRecord is set to.
This string length is limited by the MaxSymbolLength property of the
Application Object.

Returns
If successful True is returned. If unsuccessful False is returned.

Example
The following code snippet makes the call to set the symbol of
AddrSymRecord.
Result As Boolean
Result = gAddrSymRecord.SetSymbol("TEST")

SetScope Boolean

SetSymbol Boolean
AddrSymRecord object • 151

Use this method to set the symbol group of the AddrSymRecord. If the symbol
group does not exist when this function is called, the symbol group is created.

Syntax
SetSymGroup(SymGroup as String) as Boolean

Arguments
SymGroup - The string that represents the name of the symbol group to which
the symbol property will be added.

Returns
If successful True is returned. If unsuccessful False is returned.

Example
The following code snippet makes the call to set the symbol group for
AddrSymRecord.
Result As Boolean
Result = gAddrSymRecord.SetSymGroup("TEST_SYM_GROUP")

'The Result should be True if in this project and if 'gAddrSymRecord
has a valid address and symbol.

Events
No events have been defined for the AddrSymRecord object.

SetSymGroup Boolean
152 • RSLogix Automation Interface Reference Manual

The RungCmntPageTitleRecords collection represents the collection of Rung
Comment/Page Title database records (RungCommentPageTitleRecord) in
the RSLogix project. The RungCommentPageTitleRecords collection can be
obtained using the RungCommentPageTitleRecords property of the
LogixProject object. The RungCommentPageTitleRecords collection is not
creatable with the CreateObject function.

The following commented code example illustrates how you might get the
RungCmntPageTitleRecords collection from the LogixProject object. This
example adds error checking and notification.

Chapter RungCmntPageTitleRecords
collection

Application
Count

-None-
Properties Methods Events

AddRecordAttachedProgFileAndRung
AddRecordAttachedToAddress
DuplicateViaAddress
DuplicateViaFileRung
GetRecordViaAddress
GetRecordViaFileRung
GetRecordViaIndex
GetRecordViaPageTitle
GetRecordViaRungComment
RemoveRecordViaAddress
RemoveRecordViaFileRung
RemoveRecordViaIndex
SearchAndReplacePageTitle
SearchAndReplaceRungComment
RungCmntPageTitleRecords collection • 153

Properties
In most cases properties are characteristics or attributes of an object. Using a
property returns information about the object or causes a quality of the object
to change. The following properties define the RungCmntPageTitleRecords
collection.

This property returns an Application object that represents the RSLogix
application.

This property returns a long value that represents the number of
RungCmntPageTitle records saved with the project.

Methods
Using a method causes something to happen to an object. In most cases
methods are actions. Use any of the following methods to identify an action for
the RungCmntPageTitleRecords collection to perform. Although written for
the RSLogix 5 software product, the short examples following each method
may be easily adapted to RSLogix 500. For example, type definitions may vary
between products, and those differences must be considered when adapting
code to the RSLogix 500 object model.

Use this method to create a new Rung Comment/Page Title Database Record,
add it to the collection, and attach the record to a program file and rung.

Syntax
AddRecordAttachedToProgFileAndRung(ProgFile as Long, Rung as Long) as
RungCommentPageTitleRecord

'get RungCmntPageTitleRecords collection from LogixProject object
Set RungCmntPageTitleRecords =
gLogixProject.RungCmntPageTitleRecords
'if Logix failed to get the RungCmntPageTitleRecords collection then
'display an error and exit
If RungCmntPageTitleRecords Is Nothing Then
 MsgBox "ERROR: Could not get Rung Comment/Page Title Records!",
 vbExclamation, "ERROR"
 Exit Function
End If

Application Read Only

Count Read Only

AddRecordAttachedToProgFileAndRung RungCommentPageTitleRecord
154 • RSLogix Automation Interface Reference Manual

Arguments
ProgFile - The number of the program file where the documentation is to be
attached.
Rung - The number of the rung to which the RungCommentPageTitleRecord
is attached.

Returns
If successful the Rung Comment/Page Title database record is created and
added to the Rung Comment/Page Title Database Record Collection.

Example
The following code snippet creates a new Rung Comment/Page Title in
program file 3 attached to rung 12.
Set gRungCommentPageTitleRecord =
gRungCommentPageTitleRecords.AddRecordAttachedToProgFileAndRung(3,12,)

Use this method to create a new Rung Comment/Page Title Database Record,
add it to the collection, and attach the record to an address.

Syntax
AddRecordAttachedToAddress(Address as String) as
RungCommentPageTitleRecord

Arguments
Address - The text string that contains the address where the documentation is
to be attached.

Returns
If successful the Rung Comment/Page Title database record is created and
added to the Rung Comment/Page Title Database Record collection. If
unsuccessful, Nothing is returned.

Example
The following code snippet makes the call to RSLogix to add a Rung
Comment/Page Title Database record to the Rung Comment/Page Title
Database Record Collection.
Set gRungCommentPageTitleRecord =
gRungCommentPageTitleRecords.AddRecordAttachedToAddress("B3:0")

AddRecordAttachedToAddress RungCommentPageTitleRecord
RungCmntPageTitleRecords collection • 155

Use this method to create a new record for a Rung Comment/Page Title by
providing a source address that is currently in the database from which the
record information of a Rung Comment/Page Title can be duplicated and
applied to a new address.

Syntax
DuplicateViaAddress(SourceAddress as String, NewAddress as String) As
RungCommentPageTitleRecord

Arguments
SourceAddress - The string containing the address of the record to be duplicated.
NewAddress - The string containing the address of the duplicated record that
will be returned if the method is successful.

Returns
If successful, the duplicate record is returned; if unsuccessful Nothing is
returned.

Example
The following code snippet returns a Rung Comment/Page Title record
provided that a record for B3:0 exists and that a record for B3:1 does not exist
prior to the call of the Duplicate method.
gRungCommentPageTitleRecord =
gRungCommentPageTitleRecords.DuplicateViaAddress("B3:0", "B3:1")

Use this method to create a new record for a Rung Comment/Page Title by
providing a file and rung number currently in the database from which the
record information of a Rung Comment/Page Title can be duplicated and
applied to a new rung.

Syntax
DuplicateViaFileRung(SourceFileNumber as Long, SourceRungNumber as Long,
DestFileNumber as Long, DestRungNumber as Long) as
RungCommentPageTitleRecord

Arguments
SourceFileNumber - The program file that contains the rung that is attached to
the source record.
SourceRungNumber - The rung number that is attached to the source record.

DuplicateViaAddress RungCommentPageTitleRecord

DuplicateViaFileRung RungCommentPageTitleRecord
156 • RSLogix Automation Interface Reference Manual

DestFileNumber - The program file that contains the rung where the duplicated
record will be created.
DestRungNumber - The rung number that is attached to the new (duplicate)
destination record.

Returns
If successful the duplicate record is returned; if unsuccessful Nothing is
returned.

Example
This call returns a Rung Comment/Page Title record provided that a record for
program file 2, rung 0 exists and that a record for program file 4, rung 15 does
not exist prior to the call of the Duplicate method.
gRungCommentPageTitleRecord =
gRungCommentPageTitleRecords.DuplicateViaFileRung(2,0, "4,15")

Use this method to return the current Rung Comment/Page Title record
indicated by the address.

Syntax
GetRecordViaAddress(Address as String) as RungCommentPageTitleRecord

Arguments
Address - The string that contains the address of the Rung Comment/Page Title
record that is to be retrieved.

Returns
If successful, the indicated Rung Comment/Page Title record is returned; if
unsuccessful Nothing is returned.

Example
This call returns a Rung Comment/Page Title provided that an existing record
is attached to the address T4:0.
gRungCommentPageTitleRecord =
gRungCommentPageTitleRecords.GetRecordViaAddress("T4:0")

Use this method to return the current Rung Comment/Page Title record
indicated by the program file number and rung number.

GetRecordViaAddress RungCommentPageTitleRecord

GetRecordViaFileRung RungCommentPageTitleRecord
RungCmntPageTitleRecords collection • 157

Syntax
GetRecordViaFileRung(FileNumber as Long, RungNumber as Long) as
RungCommentPageTitleRecord

Arguments
FileNumber - The number of the program file that contains the rung that is
attached to the desired record.
RungNumber - The number of the rung that is attached to the desired record.

Returns
If successful the indicated Rung Comment/Page Title record is returned; if
unsuccessful Nothing is returned.

Example
This call returns a Rung Comment/Page Title provided that an existing record
is attached to program file 3, rung 4.
gRungCommentPageTitleRecord =
gRungCommentPageTitleRecords.GetRecordViaFileRung(3,4)

Use this method to return the current Rung Comment/Page Title record
indicated by the zero based index.

Syntax
GetRecordViaIndex(Index as Long) as RungCommentPageTitleRecord

Arguments
Index - The zero-based index that contains the rung comment or the page title
of the record that is to be retrieved. If the Rung Comment/Page Title database
had 100 records, 0-99 would be the legal range for the index.

Returns
If successful, the indicated Rung Comment/Page Title record is returned; if
unsuccessful Nothing is returned.

Example
This call returns a Rung Comment/Page Title record provided that there are at
least 13 records in the RungCommentPageTitleRecord collection.
gRungCommentPageTitleRecord =
gRungCommentPageTitleRecords.GetRecord(12)

GetRecordViaIndex RungCommentPageTitleRecord
158 • RSLogix Automation Interface Reference Manual

Use this method to return the next Rung Comment/Page Title record whose
page title contains the search string.

Syntax
GetRecordViaPageTitle(Index as Long, PageTitleSearchString as String, CaseSensitive
as Boolean, Wrap as Boolean) as RungCommentPageTitleRecord

Arguments
Index - The zero-based index to start the search from. If the Rung Comment/
Page Title database had 100 records, 0-99 would be the legal range for the
index. This argument is passed by reference – you must specify it as a Long,
not as an immediate.
PageTitleSearchString - The string that will be searched for in the page titles
database.
CaseSensitive - If set to True, the case of any letters in the SearchString will be
used to filter the search.
Wrap - If set to True a search wraps past the last index of the database and
continues from the beginning until a match is found or the current record’s
index matches the starting index.

Returns
If successful the page title of the Rung Comment/Page Title record that
contains the search string is returned; if unsuccessful Nothing is returned. The
Index parameter will return the index of the RungCommentPageTitleRecord
that was found.

Example
The following call performs a non case-sensitive search from record 10 for a
page title that contains Page Title text. If the search reaches the end of the
database, the search continues from 0 up to the starting index.
Dim Index As Long
Index = 10
gRungCommentPageTitleRecord =
gRungCommentPageTitleRecords.GetRecordViaPageTitle(Index, "Page Title
text", False, True)

Use this method to return the next Rung Comment/Page Title record whose
rung comment contains the search string.

GetRecordViaPageTitle RungCommentPageTitleRecord

GetRecordViaRungComment RungCommentPageTitleRecord
RungCmntPageTitleRecords collection • 159

Syntax
GetRecordViaRungComment(Index as Long, RungCommentSearchString as String,
CaseSensitive as Boolean, Wrap as Boolean) as RungCommentPageTitleRecord

Arguments
Index - The zero-based index to start the search from. If the Rung Comment/
Page Title database had 100 records, 0-99 would be the legal range for the
starting index. This argument must be passed by reference as a Long.
RungCommentSearchString - The string searched for in the Rung Comment
database.
CaseSensitive - If set to True, the case of any letters in the
RungCommentsSearchString will be used to filter the search.
Wrap - If set to True the search wraps past the last index of the database and
continues from the beginning until a match is found or the current record’s
index matches the starting index.

Returns
If successful the rung comment for the Rung Comment/Page Title record that
contains the search string is returned; if unsuccessful Nothing is returned. The
starting index will return the index of the last RungCommentPageTitleRecord
that was found.

Example
The following call performs a non case-sensitive search from record 10 for a
page title that contains Page Title text. If the search reaches the end of the
database, the search continues from 0 up to the starting index.
Dim Index As Long
Index = 10
gRungCommentPageTitleRecord =
gRungCommentPageTitleRecords.GetRecordViaRungComment(Index, "PLC-5",
False, True)

Use this method to remove a record from the Rung Comment/Page Title
record by indicating its address.

Syntax
RemoveRecordViaAddress(Address as String) as Boolean

Arguments
Address - The string that contains the address of the Rung Comment/Page Title
record that is to be removed.

RemoveRecordViaAddress Boolean
160 • RSLogix Automation Interface Reference Manual

Returns
If successful the indicated record is removed from the Rung Comment/Page
Title collection and a value of True is returned; if unsuccessful False is returned.

Example
The following call removes the Rung Comment/Page Title record attached to
address B3:0.
Dim Res As Boolean
Res = gRungCommentPageTitleRecords.RemoveRecordViaAddress("B3:0");

Use this method to remove a record from the Rung Comment/Page Title
record by indicating the file number and rung number of the record.

Syntax
RemoveRecordViaFileRung(FileNumber as Long, RungNumber as Long) as
Boolean

Arguments
FileNumber - The program file number that contains the rung to which the
documentation is attached.
RungNumber - The rung number to which the documentation is attached.

Returns
If successful, the indicated record is removed from the Rung Comment/Page
Title collection and a value of True is returned; if unsuccessful False is returned.

Example
The following call removes the Rung Comment/Page Title record attached to
ProgFile 4, rung 2 from the Rung Comment/Page Title database.
Dim Res As Boolean
Res = gRungCommentPageTitleRecords.RemoveRecordViaFileRung(4,2)

Use this method to remove the Rung Comment/Page Title record indicated by
the zero based index.

Syntax
RemoveRecordViaIndex(Index as Long) as Boolean

RemoveRecordViaFileRung Boolean

RemoveRecordViaIndex Boolean
RungCmntPageTitleRecords collection • 161

Arguments
Index - The zero based index that contains the rung comment or the page title
of the record that is to be removed. If the Rung Comment/Page Title database
had 100 records, 0-99 would be the legal range for the index.

Returns
If successful, the indicated record is removed from the Rung Comment/Page
Title collection and a value of True is returned; if unsuccessful False is returned.

Example
This example removes record 2 (the third record) from the zero-based index.
Dim Res As Boolean
Res = gRungCommentPageTitleRecords.RemoveRecordViaIndex(2)

Use this method to replace text in the page title of the next Rung Comment/
Page Title record whose page title contains the search string.

Syntax
SearchAndReplacePageTitle(Index as Long, PageTitleSearchString as String,
PageTitleReplaceString as String, CaseSensitive as Boolean, Wrap as Boolean, ReplaceAll
as Boolean) as Long

Arguments
Index - The zero-based index to start the search from. If the Rung Comment/
Page Title database had 100 records, 0-99 would be the legal range for the
index. This argument is passed by reference – you must specify it as a Long,
not as an immediate.
PageTitleSearchString - The string that is searched for in the Page Title database.
PageTitleReplaceString - The replacement string to be used in place of the
SearchString page title database.
CaseSensitive - If set to True, the case of any letters in the SearchString will be
used to filter the search.
Wrap - If set to True a search wraps past the last index of the database and
continues from the beginning until a match is found or the current record’s
index matches the starting index.
ReplaceAll - If set to True all instances of the SearchString will be replaced
throughout all of the rung comments in the Rung Comment/Page Title
database. If ReplaceAll is set, the Wrap parameter is ignored.

SearchAndReplacePageTitle Long
162 • RSLogix Automation Interface Reference Manual

Returns
The number of Rung Comment/Page Title database record page titles that
were changed is returned. Index will contain the index of the last changed
record if the number of changes is greater than 0.

Example
The following call will perform a non case-sensitive search and replace from
record 10 for a page title that contains “test” and replace “test” with “debug.”
Since ReplaceAll is not True there will only be one replacement if there are any.
If the search reaches the end of the database, the search will wrap back to
record 0 and continue searching until either a match is found or the Index is
reached.
Dim Index As Long
Index = 10
CommentsReplaced As Long
CommentsReplaced = gRungCommentPageTitleRecords.
SearchAndReplacePageTitle (Index, "test", "Debug", False, True,
False)

Use this method to replace text in the rung comment of the next Rung
Comment/Page Title record whose rung comment contains the search string.

Syntax
SearchAndReplaceRungComment(Index as Long, RungCommentSearchString as
String, RungCommentReplaceString as String, CaseSensitive as Boolean, Wrap as Boolean,
ReplaceAll as Boolean) as Long

Arguments
Index - The zero-based index to start the search from. If the Rung Comment/
Page Title database had 100 records, 0-99 would be the legal range for the
index. This argument is passed by reference – you must specify it as a Long, not
as an immediate.
PageTitleSearchString - The string that is searched for in the Rung Comment
database.
PageTitleReplaceString - The replacement string to be used in place of the
SearchString rung comment database.
CaseSensitive - If set to True, the case of any letters in the SearchString will be
used to filter the search.

SearchAndReplaceRungComment Long
RungCmntPageTitleRecords collection • 163

Wrap - If set to True a search wraps past the last index of the database and
continues from the beginning until a match is found or the current record’s
index matches the starting index.
ReplaceAll - If set to True all instances of the SearchString will be replaced
throughout all of the rung comments in the Rung Comment/Page Title
database. If ReplaceAll is set, the Wrap parameter is ignored.

Returns
The number of Rung Comment/Page Title database record page titles that
were changed is returned. Index will contain the index of the last changed
record if the number of changes is greater than 0.

Example
The following call will perform a non case-sensitive search and replace from
record 10 for a rung comment that contains “test” and replace “test” with
“debug.” Since ReplaceAll is not True there will only be one replacement if
there are any. If the search reaches the end of the database, the search will wrap
back to record 0 and continue searching until either a match is found or the
Index is reached.
Dim Index As Long
Index = 10
CommentsReplaced As Long
CommentsReplaced = gRungCommentPageTitleRecords.
SearchAndReplaceRungComment (Index, "test", "Debug", False, True,
False)

Events
No events have been defined for the RungCmntPageTitleRecords collection.
164 • RSLogix Automation Interface Reference Manual

The RungCmntPageTitleRecord object represents a Rung Comment/Page
Title record in the RSLogix project. The RungCommentPageTitleRecord is
obtained via the RungCommentPageTitleRecords collection Add, GetRecord,
GetRecordViaRungComment, and GetRecordViaPageTitle member
functions. RungCommentPageTitleRecord is not creatable with the
CreateObject function.

The following commented code example illustrates how you might access the
RungCmntPageTitleRecord object.

Chapter RungCmntPageTitleRecord
object

Address
Application
IsAttachedToAddress
PageTitle
ProgFile
RungComment
RungNumber

-None-
Properties Methods Events

SetAddress
SetPageTitle
SetProgFileAndRung
SetRungComment

Private Sub Form_Load()
Set gRungCmntPageTitleRecords = gLogixProject.RungCmntPageTitleRecords
Set gRungCmntPageTitleRecord =
gRungCmntPageTitleRecords.AddRecordAttachedtoAddress("B3:0")
If gRungCmntPageTitleRecord Is Nothing Then
'if the RungCmntPageTitleRecord object does not exist
'then display an error
 MsgBox "Error getting Rung Comment Page Title record"
End If
RungCmntPageTitleRecord object • 165

Properties
In most cases properties are characteristics or attributes of an object. Using a
property returns information about the object or causes a quality of the object
to change. The following properties define the RungCmntPageTitleRecord
object.

This property returns a string containing the address of the
RungCommentPageTitleRecord. This string will be empty if the record is
attached to a program file/rung number combination.

This property returns an Application object that represents the RSLogix
application.

If this property is True the record is attached to an address. If this property is
False the record is attached to a program file/rung number combination.

This property returns a string containing the page title of the
RungCommentPageTitleRecord.

This property returns a long containing the program file number of the
RungCommentPageTitleRecord. This property will return (-1) if the record is
attached to an address.

This property returns a string containing the rung comment of the
RungCommentPageTitleRecord.

This property returns a long containing the rung number of the
RungCommentPageTitleRecord. This property will return (-1) if the record is
attached to an address.

Address String - Read Only

Application Application - Read Only

IsAttachedToAddress Boolean - Read Only

PageTitle String - Read Only

ProgFile Long - Read Only

RungComment String - Read Only

RungNumber Long - Read Only
166 • RSLogix Automation Interface Reference Manual

Methods
Using a method causes something to happen to an object. In most cases
methods are actions. Use any of the following methods to identify an action for
the RungCmntPageTitleRecord object to perform. Although written for the
RSLogix 5 software product, the short examples following each method may
be easily adapted to RSLogix 500. For example, type definitions may vary
between products, and those differences must be considered when adapting
code to the RSLogix 500 object model.

Use this method to set the Address of a RungCommentPageTitleRecord. If
successful this method will set the AttachedToAddress property True.

Syntax
SetAddress(Address as String) as Boolean

Arguments
Address - The string that contains the address that is attached to the
RungCommentPageTitleRecord.

Returns
If successful True is returned; if unsuccessful False is returned.

Example
The following code snippet makes the call to RSLogix to set the address of
RungCommentPageTitleRecord.
Result As Boolean
Result = gRungCommentPageTitleRecord.SetAddress("B3:0")

Use this method to set the page title text of a RungCommentPageTitleRecord.

Syntax
SetPageTitle(PageTitle as String) As Boolean

Arguments
PageTitle - The text string that contains the page title text of the
RungCommentPageTitleRecord.

Returns
If successful True is returned; if unsuccessful False is returned.

SetAddress Boolean

SetPageTitle Boolean
RungCmntPageTitleRecord object • 167

Example
The following code snippet makes the call to RSLogix to set the page title text
of RungCommentPageTitleRecord.
Result As Boolean
Result = gRungCommentPageTitleRecord.SetPageTitle("This section
controls the Main Transfer Motor on Line 2")

Use this method to set the program file and rung of a
RungCommentPageTitleRecord. If successful this method sets the
AttachedToAddress property False.

Syntax
SetProgFileAndRung(ProgFile as Long, Rung as Long) As Boolean

Arguments
ProgFile - The number of the program file that contains the rung that is attached
to the RungCommentPageTitleRecord.
Rung - The number of the rung to which the RungCommentPageTitleRecord
is attached.

Returns
If successful True is returned, if unsuccessful False is returned.

Example
The following code snippet makes the call to RSLogix to attach the Rung
Comment/Page Title to program file 3 rung 2. The result will be successful
provided that program file 3 is a ladder file that contains rung 2 and program
file 3, rung 2 is not attached to another RungCommentPageTitle record.
Result As Boolean
Result = gRungCommentPageTitleRecord.SetProgFileAndRung(3,2)

This method sets the rung comment of a RungCommentPageTitleRecord.

Syntax
SetRungComment(RungComment as String) as Boolean

Arguments
RungComment - The text string that contains the rung comment of the
RungCommentPageTitleRecord.

SetProgFileAndRung Boolean

SetRungComment Boolean
168 • RSLogix Automation Interface Reference Manual

Returns
If successful True is returned; if unsuccessful False is returned.

Example
The following code snippet makes the call to RSLogix to set the rung comment
text of the RungCommentPageTitleRecord.
Result As Boolean
Result = gRungCommentPageTitleRecord.SetRungComment("This section
controls the Main Transfer Motor on Line 2")

Events
No events have been defined for the RungCmntPageTitleRecord object.
RungCmntPageTitleRecord object • 169

170 • RSLogix Automation Interface Reference Manual

Note: The PasswordPrivilegeConfig object applies to RSLogix 5 only.

The PasswordPrivilegeConfig object represents the passwords and privileges
configuration in the RSLogix project. The PasswordPrivilegeConfig is obtained
using the PasswordPrivilegeConfig property of the LogixProject object.
PasswordPrivilegeConfig is not creatable with the CreateObject function.

Chapter PasswordPrivilegeConfig
object

Application
CurrentClass
NodePrivilegeEntryCount

-None-
Properties Methods Events

AddNodePrivilegeEntry
ChangeNodePrivilegeInfo
ClassLogin
DownloadPrivChanges
GetChannelPrivileges
GetDataFilePrivileges
GetDefaultClass
GetFeaturePrivileges
GetNodePrivilegeInfo
GetProgFilePrivileges
IsClassPasswordProtected
RefreshChannelPrivsFromOnline
RefreshPassPrivsFromOnline
RemoveNodePrivilegeEntry
SetChannelPrivileges
SetClassPassword
SetDataFilePrivileges
SetDefaultClass
SetFeaturePrivileges
SetProcessorPassword
SetProgFilePrivileges
PasswordPrivilegeConfig object • 171

The following commented code example illustrates how you might access the
PasswordPrivilegeConfig object.

Properties
In most cases properties are characteristics or attributes of an object. Using a
property returns information about the object or causes a quality of the object
to change. The following properties define the PasswordPrivilegeConfig
object.

This property returns an Application object that represents the RSLogix
application.

This property returns an integer value that returns the current class that the
project is logged into.

This property returns the number of active node privilege entries.

Methods
Using a method causes something to happen to an object. In most cases
methods are actions. Use any of the following methods to identify an action for
the PasswordPrivilegeConfig object to perform.

Dim gPassPriv As RSLogix5.PasswordPrivilegeCfg

If LogixProject.Processor.HasPasswordPrivileges Then
 gPassPriv = LogixProject.PasswordPrivilegeCfg()
 If gPassPriv Is Nothing Then
 MsgBox "Error: Could not get password/privilege config!"
 vbExclamation , "Error"
 Exit Function
 End If
End If

Application Application - Read Only

CurrentClass Integer - Read Only

NodePrivilegeEntryCount Application - Read Only
172 • RSLogix Automation Interface Reference Manual

Normally a station/node linked to a channel has the same privilege class as the
channel it is linked to. You can, however, specify class privileges for a node
separately. Node privileges override the default privilege class of the channel.
Use this method to add a node privilege entry to the node privileges list in the
current project.

Syntax
AddNodePrivilegeEntry (Channel as lgxChannel, RemoteStation as Long,
RemoteBridgeLinkID as Long, Class as Integer) as Short

Arguments
Channel - The channel that is used to perform communications. The possible
channels are lgxPLC5_Ch0, or any channel that the current processor could
have configured for DH+ communications. The valid lgxChannel types are
listed at GetDefaultClass on page 178.
RemoteStation - The station address of the node which will be placed in the
privilege class specified in the Node Privilege table, rather than the class
specified as the default class for the given channel. If the channel is lgxChan0
the remote station can only be 0. If the channel is lgxChan1A or lgxChan1B the
remote station can be set within the range of 0-77 octal.
RemoteBridgeLinkID - When you are using DH+ networks through a PLC-5/
250, the link number is used to identify the DH+ networks. You specify this
link number on the PLC-5/250 configuration screens. If you are not using
DH+ bridging, set this field to 0 to specify it as a local network. If you are using
DH+ bridging, specify the link number of the network where the device
establishing communications resides. The valid range is 0-65536.
Class - This is the privilege class which the node specified will be placed in once
communications are established, rather than the default class assigned to the
specified channel.

Returns
Returns (-1) if unsuccessful, otherwise the method will have been successful.
A (-1) is be returned if:

the channel cannot be configured for DH+
the RemoteStation is not an octal number (for example: 8)
the RemoteStation or RemoteStationLinkID are outside the valid range
the class currently logged into does not have “modify privilege” rights
the specified channel had an existing node privilege entry

AddNodePrivilegeEntry Short
PasswordPrivilegeConfig object • 173

Example
The following code snippet makes the call to RSLogix to add a privilege node
entry to the current project which is a 5/40 series B revision processor. This
processor type has channel 2A which can be configured for DH+. We will
configure the station to 16 and the link ID to 10 and make class 2 the default
class for going online via channel 2A.
Index As Integer
Index = gPassPriv.AddNodePrivilegeEntry(lgxChan2A, 16, 10, 2)

Use this method to change settings in a node privilege entry in the current
project.

Syntax
ChangeNodePrivilegeInfo(Index as Long, Channel as lgxChannel,
RemoteStation as Long, RemoteBridgeLinkID as Long, Class as Integer) as
Boolean

Arguments
Index - The 0-based number representing the entry in the list of node privileges.
If there are 10 entries in the list of node privileges, then the existing indices
would range from 0-9.
Channel - The channel that is used to perform communications. The possible
channels are lgxPLC5_Ch0 or any channel that the current processor could
have configured for DH+ communications. The valid lgxChannel types are
listed at GetDefaultClass on page 178.
RemoteStation - The station address of the node which will be placed in the
privilege class specified in the Node Privilege table rather than the class
specified as the default class for the given channel. If the channel is
lgxPLC5_Ch0, the remote station can only be 0. If the channel is
lgxPLC5_Ch1A or lgxPLC5_Ch1B, the remote station can be set within the
range of 0-77 octal.
RemoteBridgeLinkID - When you are using DH+ networks through a PLC-5/
250, the link number is used to identify the DH+ networks. You specify this
link number on the PLC-5/250 configuration screens. If you are not using
DH+ bridging, set this field to 0 to specify it as a local network. If you are using
DH+ bridging, specify the link number of the network where the device
establishing communications resides. The valid range is 0-65536.
Class - The privilege class which the node specified will be placed in when
communications are established rather than the default class assigned to the
specified channel.

ChangeNodePrivilegeInfo Boolean
174 • RSLogix Automation Interface Reference Manual

Returns
Returns True if successful, otherwise returns False. False is returned if:

the channel cannot be configured for DH+
the RemoteStation is not an octal number (for example: 8) within the
appropriate range
the RemoteStation or RemoteStationLinkID are outside the valid range
the Index is outside of the existing range
the class currently logged into does not have “modify privilege” rights

Example
The following code snippet makes the call to RSLogix to change a privilege
node entry in the current project which is a 5/40 series B revision B processor.
The existing entry at Index 1 is configured using channel 2A, station to 16,
linkID 10 and class 2 for the default class. The call in the example will change
the settings to channel 1B, station 2, remote link ID 0 and class 3 as the default
class for going online via channel 1B.
Result As Boolean
Result = gPassPriv.ChangeNodePrivilegeInfo(1, lgxPLC5_Ch1B, 2, 0, 3)

Use this method to log into an offline class by passing the correct password for
the class.

Syntax
ClassLogin(Class as Integer, Password as String) as Boolean

Arguments
Class - The class that the user wants to log into. The legal range is 1-4.
Password - The password for the class in which you are logging in.

Returns
True is returned if this method was successful, otherwise False is returned.
False would be returned if the incorrect password was used for the specified
class. If the class is not password protected, pass an empty string as the
Password parameter.

ClassLogin Boolean
PasswordPrivilegeConfig object • 175

Example
The following code snippet makes the call to RSLogix to log into class 2,
providing the password ‘password.’
Result As Boolean

Result = gPassPriv.ClassLogin(2, "password")

Use this method to download the password/privilege settings to the processor
from the project while online. This method updates all of the processor’s
password/privilege settings except channel, data file, and program file
privileges.

Syntax
DownloadPrivChanges() as Boolean

Returns
Returns True if successful, otherwise returns False.

Example
The following code snippet downloads the online processor’s password/
privilege settings.
bResult As Boolean
bResult = gPassPriv.DownloadPrivChanges()

Use this method to set the specified channel privileges in the current project. If
the project is online use RefreshChannelPrivsFromOnline in order to ensure that
the project matches the information stored in the online channel privilege
image.

Syntax
GetChannelPrivileges(Channel as lgxChannel, Class as Integer) as lgxPrivilege

Arguments
Channel - The channel that contains the privilege class. Legal lgxChannel types
include:

(0) lgxPLC5_Ch0
(1) lgxPLC5_Ch1A
(2) lgxPLC5_Ch1B
(3) lgxPLC5_Ch2A
(4) lgxPLC5_Ch2B

DownloadPrivChanges Boolean

GetChannelPrivileges lgxPrivilege
176 • RSLogix Automation Interface Reference Manual

(5) lgxPLC5_Ch2
(6) lgxPLC5_Ch3A
(7) lgxPLC5_Offline

Class - The class number for which the privileges will be retrieved. The legal
range is 1-4.

Returns
The method returns one of the following values.

(0) lgxNoPriv
(1) lgxReadPriv
(2) lgxWritePriv
(3) lgxReadWritePriv
(4) lgxFailedToGetPriv

Example
The following code snippet makes the call to RSLogix to get the class 4
privileges for channel 3A.
Rights As lgxPrivilege
Rights = gPassPriv.GetChannelPrivileges(lgxPLC5_Ch3A, 4)
If Rights <> lgxFailedToGetPriv Then

If (Rights = lgxNoPriv) Then
MsgBox("No Privileges")

ElseIf (Rights = lgxReadPriv)
MsgBox("Read Privileges")

ElseIf (Rights = lgxWritePriv) Then
MsgBox("Write Privileges")

ElseIf (Rights = lgxReadWritePriv)
MsgBox("Read and Write Privileges")

End If
End If

Use this method to get the data file privileges in the current project. If the
project is online with the processor, the privileges for the specified file will be
uploaded.

Syntax
GetDataFilePrivileges(DataFile as Long, Class as Integer) as lgxPrivilege

Arguments
DataFile - The number of the data file that you wish to retrieve class privileges
for.

GetDataFilePrivileges lgxPrivilege
PasswordPrivilegeConfig object • 177

Class - The class number for which the privileges will be retrieved. The legal
range is 1-4.

Returns
The method returns one of the following values.

(0) lgxNoPriv
(1) lgxReadPriv
(2) lgxWritePriv
(3) lgxReadWritePriv
(4) lgxFailedToGetPriv

Example
The following code snippet makes the call to RSLogix to get the class 3
privileges for data file 5.
Rights As lgxPrivilege
Rights = gPassPriv.GetDataFilePrivileges(5, 3)
If Rights <> lgxFailedToGetPriv Then
 If (Rights = lgxNoPriv) Then
 MsgBox("No Privileges")
 ElseIf (Rights = lgxReadPriv)
 MsgBox("Read Privileges")
 ElseIf (Rights = lgxWritePriv) Then
 MsgBox("Write Privileges")
 ElseIf (Rights = lgxReadWritePriv)
 MsgBox("Read and Write Privileges")
 End If
End If

Use this method to get the default class of the offline editor or of any of the
processor’s channels.

Syntax
GetDefaultClass(Channel as lgxChannel) as Long

Arguments
Channel - The channel that contains the privilege class. The possible lgxChannel
types include:

(0) lgxPLC5_Ch0
(1) lgxPLC5_Ch1A
(2) lgxPLC5_Ch1B
(3) lgxPLC5_Ch2A

GetDefaultClass Long
178 • RSLogix Automation Interface Reference Manual

(4) lgxPLC5_Ch02B
(5) lgxPLC5_Ch2
(6) lgxPLC5_Ch3A
(7) lgxPLC5_Offline

Returns
An integer is returned which represents the class number. 0 is returned if the
channel does not exist in the processor.

Example
The following code snippet makes the call to RSLogix to get the default class
for channel 0.
nClass As Long
nClass = gPassPriv.GetDefaultClass(lgxPLC5_CH0)

Use this method to get the specified feature privileges in the current project.

Syntax
GetFeaturePrivileges(PrivilegeType as lgxPrivilege, Class as Integer) as lgxBinary

Arguments
PrivilegeType - The possible lgxPrivilege types include:

(0) lgxPrivModify
(1) lgxPrivDataFileCreateDelete
(2) lgxPrivProgFileCreateDelete
(3) lgxPrivLogicalWrite
(4) lgxPrivPhysicalWrite
(5) lgxPrivLogicalRead
(6) lgxPrivPhysicalRead
(7) lgxPrivModeChange
(8) lgxPrivIOForce
(9) lgxPrivSFCForce
(10) lgxPrivClearMemory
(11) lgxPrivDownload
(12) lgxPrivOnlineEdit
(13) lgxPrivEditPassword

Class - The class from which the privilege status will be received.

GetFeaturePrivileges lgxBinary
PasswordPrivilegeConfig object • 179

Returns
If the method is successful, it returns lgxEnabled or lgxDisabled. Otherwise,
it returns lgxInvalid.

Example
The following code snippet makes the call to RSLogix to get the online editing
privileges for class 4.

Use this method to get the specified node privilege in the current project.

Syntax
GetNodePrivilegeInfo(Index as Long, Channel as lgxChannel, RemoteStation as
Long, RemoteBridgeLinkID as Long, Class as Integer) as Boolean

Arguments
Index - The 0-based number representing the entry in the list of node privileges.
If there are 10 entries in the list of node privileges, then the existing indexes
would range from 0-9.
Channel - This parameter will receive the lgxChannel that is specified by the
entry located with the Index. Pass this parameter by reference.
RemoteStation - This parameter will receive the remote station number specified
by the entry located with the Index. Pass this parameter by reference.
RemoteBridgeLinkID - This parameter will receive the remote bridge link ID
specified by the entry located with the Index. Pass this parameter by reference.
Class - This parameter will receive the class specified by the entry located with
the Index. Pass this parameter by reference.

GetNodePrivilegeInfo Boolean

Result As lgxBinary

Result = gPassPriv.GetFeaturePrivileges(lgxPrivOnlineEdit, 4)

If Result = lgxEnabled Then
 MsgBox("Class 4 has Online Edit Privileges")
ElseIf Result = lgxDisabled Then
 MsgBox("Class 4 does not have Online Edit Privileges")
Else
 MsgBox("Error getting Class 4 Edit Privileges")
End If
180 • RSLogix Automation Interface Reference Manual

Returns
Returns True if successful, otherwise returns False. If False is returned the
Channel, RemoteStation, RemoteBridgeLinkID, and the Class parameters will
not be updated by this method.

Example
The following code snippet makes the call to RSLogix to get the node privilege
information from each node entry and sends some of the information to the
user via a message box.
Chan As lgxChannel
ChannelString As String
StationNumber As Long
StationNumberString As String
BridgeLinkIDNumber As Long
class As Integer
msg As String
Count As Long
Index As Long
IndexString As String
Count = gPassPriv.GetNodePrivilegeEntryCount() - 1

For Index = 0 To Count

 If gPassPriv.GetNodePrivilegeInfo(Index, Chan,
 StationNumber, BridgeLinkIDNumber, class) Then

 ChannelString = Switch(Chan = lgxChan0, "Channel 0", Chan =
 lgxChan1A, "Channel DH+ 1A", Chan = lgxChan1B, "Channel DH+ 1B")

 StationNumberString = Format(StationNumber)

 IndexString = Format(Index)

 Msg = "The node privilege in entry "& IndexString "has" &
 ChannelString & " for the channel and "& StationNumberString
 & " for the Remote Station Number"

 MsgBox(Msg)
 End If

Next Index
PasswordPrivilegeConfig object • 181

Use this method to get the specified program file privileges in the current
project. If the project is online with the processor, the privileges for the
specified file will be uploaded.

Syntax
GetProgFilePrivileges(ProgFile as Long, Class as Integer) as lgxPrivilege

Arguments
ProgFile - The number of the program file that you wish to retrieve class
privileges for.
Class - The class number for which the privileges will be retrieved. The legal
range in 1-4.

Returns
Returns lgxNoPriv, lgxReadPriv, lgxReadWritePriv, or lgxFailedToGetPriv.

Example
The following code snippet makes the call to RSLogix to get the class 3
privileges for program file 2.
Rights As lgxPrivilege

Rights = gPassPriv.GetProgFilePrivileges(2, 3)
If (Rights = lgxNoPriv) Then
 MsgBox("No Privileges")
ElseIf (Rights = lgxReadPriv)
 MsgBox("Read Privileges")
ElseIf (Rights = lgxWritePriv) Then
 MsgBox("Write Privileges")
ElseIf (Rights = lgxReadWritePriv)
 MsgBox("Read and Write Privileges")
End If

Use this method to return if the login class has been password protected.

Syntax
IsClassPasswordProtected(Class as Integer) as Boolean

Arguments
Class - The class that is checked for a password.

GetProgFilePrivileges lgxPrivilege

IsClassPasswordProtected Boolean
182 • RSLogix Automation Interface Reference Manual

Returns
If the class is protected, True is returned; otherwise False is returned.

Example
The following code snippet makes the call to RSLogix to check if class 1 is
password protected.
Result As Boolean
Result = gPassPriv.IsClassPasswordProtected(1)

Use this method to upload the channel privilege settings from the processor
while online. This method will update the project’s privilege settings. If the
project is online using this method before calling GetChannelPrivileges will ensure
that the channel privilege information in the project matches the channel
privilege in the online image.

Syntax
RefreshChannelPrivsFromOnline() as Boolean

Returns
Returns True if successful, otherwise returns False.

Example
The following code snippet uploads the online processor’s channel privilege
settings.
bResult As Boolean
bResult = gPassPriv.RefreshChannelPrivsFromOnline()

Use this method to upload the password/privilege settings from the processor
while online. This method will update all of the project’s password/privilege
settings except channel, data file, and program file privileges.

Syntax
RefreshPassPrivsFromOnline() as Boolean

Returns
Returns True if successful, otherwise False.

RefreshChannelPrivsFromOnline Boolean

RefreshPassPrivsFromOnline Boolean
PasswordPrivilegeConfig object • 183

Example
The following code snippet uploads the online processor’s password/privilege
settings.
bResult As Boolean
bResult = gPassPriv.RefreshPassPrivsFromOnline()

Use this method to remove a node privilege entry from the node privileges list
in the current project.
Once an entry is removed, the indices of the existing entries above the removed
entry are decreased by one.
For example: if the entry at index 0 is removed, the entry at index 1 becomes
index 0, the entry index 2 becomes 1, etc.

Syntax
RemoveNodePrivilegeEntry(Index as Short) as Boolean

Arguments
Index - the 0-based number representing the entry in the list of node privileges.
If there are 10 entries in the list of node privileges, then the existing indices
would range from 0-9. An integer may be used for this parameter in Visual
Basic since Visual Basic does not support shorts.

Returns
Returns True if successful, otherwise returns False. False is returned if the
Index is outside of the index range of the currently existing node privilege
entries.

Example
The following code snippet makes the call to RSLogix to remove a privilege
node entry from the node privileges list. You could use GetNodePrivilegeInfo to
get the privilege info settings to determine which entry to remove.
Result As Boolean
Result = gPassPriv.RemoveNodePrivilegeEntry(0)

Use this method to set the specified channel privileges in the current project.

Syntax
SetChannelPrivileges(Channel as lgxChannel, Class as Integer, Privilege as lgxPrivilege)
as Boolean

RemoveNodePrivilegeEntry Boolean

SetChannelPrivileges Boolean
184 • RSLogix Automation Interface Reference Manual

Arguments
Channel - The channel that contains the privilege class. Legal lgxChannel types
include:

(0) lgxPLC5_Ch0
(1) lgxPLC5_Ch1A
(2) lgxPLC5_Ch1B
(3) lgxPLC5_Ch2A
(4) lgxPLC5_Ch2B
(5) lgxPLC5_Ch2
(6) lgxPLC5_Ch3A
(7) lgxPLC5_Offline

Class - The class number for which the privileges will be retrieved. The legal
range is 1-4.
Privilege - The privileges that are enabled for the specified class and channel.
Valid lgxPrivilege types are:

(0) lgxNoPriv
(1) lgxReadPriv
(2) lgxWritePriv
(3) lgxReadWritePriv
(4) lgxFailedToGetPriv

Returns
Returns True if successful, otherwise returns False.

Example
The following code snippet makes the call to RSLogix to set the class 3
privileges for channel 2 to Write only.
Rights As lgxPrivilege
Rights = lgxWritePriv
gPassPriv.SetChannelPrivileges(lgxPLC5_Ch2, 3, Rights)

Use this method to set the password for the indicated class.

Syntax
SetClassPassword(OldPassword as String, NewPassword as String, Class as Integer) as
Boolean

SetClassPassword Boolean
PasswordPrivilegeConfig object • 185

Arguments
OldPassword - The string that contains the old password. If there is no old
password, use an empty string.
NewPassword - The string that contains the new password. The password is
limited to 10 characters in length.
Class - The class that is checked for a password.

Returns
If the new password is set, True is returned; otherwise False is returned.

Example
The following code snippet makes the call to RSLogix to change the password
of class 1.
Result As Boolean
Result = gPassPriv.SetClassPassword("oldpasswrd", "newpass", 1)

Use this method to set the specified data file privileges in the current project.

Syntax
SetDataFilePrivileges(DataFile as Long, Class as Integer, Privilege as lgxPrivilege) as
Boolean.

Arguments
DataFile - The number of the data file that you wish to set class privileges for.
Class - The class number for which the privileges will be retrieved. The legal
range is 1-4.
Privileges - The privileges that are enabled for the specified class and data file.
Valid lgxPrivilege types are:

(0) lgxNoPriv
(1) lgxReadPriv
(2) lgxWritePriv
(3) lgxReadWritePriv
(4) lgxFailedToGetPriv

Returns
Returns True if successful, otherwise returns False. False will be returned if the
class logged it to does not have “modify privilege” rights.

SetDataFilePrivileges Boolean
186 • RSLogix Automation Interface Reference Manual

Example
The following code snippet makes the call to RSLogix to set the class 2
privileges for data file 7 to disable read and write privileges.
Rights As lgxPrivilege
Rights = lgxNoPriv
gPassPriv.SetDataFilePrivileges(7, 2, Rights)

Use this method to set the default class of the offline editor or any of the
processor’s channels.

Syntax
SetDefaultClass(Channel as lgxChannel, Class as Integer) as Boolean

Arguments
Channel - The channel to assign the class to.
Class - The class that will be assigned to the channel.

Returns
If successful, True is returned, otherwise False is returned. This may be
unsuccessful if lgxClassError is used for class, or if the channel does not exist in
the processor, or if the class of the currently logged in user does not have the
privilege to modify privileges.

Example
The following code snippet makes the call to RSLogix to set the default class
for channel 0.
Result As Boolean
Result = gPassPriv.SetDefaultClass(lgxPLC5_Ch1A, 2)

Use this method to set the specified feature privileges in the current project.

Syntax
SetFeaturePrivileges(PrivilegeType as lgxPrivilege, Class as Integer, Enabled as Boolean)
as Boolean

SetDefaultClass Boolean

SetFeaturePrivileges Boolean
PasswordPrivilegeConfig object • 187

Arguments
PrivilegeType - The possible lgxPrivilege are listed below.

(0) lgxPrivModify
(1) lgxPrivDataFileCreateDelete
(2) lgxPrivProgFileCreateDelete
(3) lgxPrivLogicalWrite
(4) lgxPrivPhysicalWrite
(5) lgxPrivLogicalRead
(6) lgxPrivPhysicalRead
(7) lgxPrivModeChange
(8) lgxPrivIOForce
(9) lgxPrivSFCForce
(10) lgxPrivClearMemory
(11) lgxPrivDownload
(12) lgxPrivOnlineEdit
(13) lgxPrivEditPassword

Class - The class from which the privilege status will be set.
Enabled - The status of the privilege. Enabled if True, Disabled if False.

Returns
Returns True if successful, otherwise returns False. If the currently active class
does not have the privilege to modify privileges this function will return False.

Example
The following code snippet makes the call to RSLogix to disable the download
privileges for class 3.
gPassPriv.SetFeaturePrivileges(lgxPrivDownload, 3, False)

Use this method to set the processor password initially or change the processor
password if it is already set.

Syntax
SetProcessorPassword(OldPassword as String, NewPassword as String) as Boolean

Arguments
OldPassword - The string that contains the old password. If there is no old
password, use an empty string.
NewPassword - The string that contains the new password. The password is
limited to 10 characters in length.

SetProcessorPassword Boolean
188 • RSLogix Automation Interface Reference Manual

Returns
True is returned if the new password is set, otherwise False is returned.

Example
The following code snippet makes the call to RSLogix to change the processor
password from ‘oldpasswrd’ to ‘newpass.’

Use this method to set the specified program file privileges in the current
project.

Syntax
SetProgFilePrivileges(ProgFile as Long, Class as Integer, Privileges as lgxPrivileges) as
Boolean

Arguments
ProgFile - The number of the program file that you wish to set class privileges
for.
Class - The class number for which the privileges will be retrieved. The legal
range is 1-4.
Privileges - The privileges that are enabled for the specified class and program
file. Refer to valid lgxPrivilege types as listed at GetChannelPrivileges on
page 177.

Returns
Returns True if successful, otherwise returns False. False will be returned if the
class logged in to does not have “modify privilege” rights.

Example
The following code snippet makes the call to RSLogix to set the class 2
privileges for program file 7 to disable read and write privileges.
Rights As lgxPrivilege
Rights = lgxNoPriv
gPassPriv.SetProgFilePrivileges(7, 2, Rights)

Events
No events have been defined for the PasswordPrivilegeConfig object.

Result As Boolean
Result = gPassPriv.SetProcessorPassword("oldpasswrd","newpass")

SetProgFilePrivileges Boolean
PasswordPrivilegeConfig object • 189

190 • RSLogix Automation Interface Reference Manual

Introduction
The following pages illustrate the object models for RSLogix 5 and RSLogix
500 Programming Software.

Appendix Object model
diagrams
Object model diagrams • 191

RSLogix 5 object model summary
Application

Application
AutoSaveInterval
BackupCount
EnableAutoArrange
EnableAutoSave
EncodedRouteString
FullName
LibrarySearchPath
MaxDescriptionLineLength
MaxSymbolLength
Name
NumberOfDescriptionLines
Parent
PromptForRevNote
ProVersion
SourceSearchPath
VBAVersion
VBE
Version
Visible
WindowHandle
WindowState

[FileNew]
[FileOpen]
[GetActiveProject]
[GetProcessorTypes]
[GoOffline]
[GoOnline]
[Quit]
[Upload]

<AfterUpload>
<BeforeFileNew>
<BeforeFileOpen>
<BeforeOffline>
<BeforeOnline>
<BeforeUpload>
<ClosingAllProjects>
<Quit>

LogixProject

AddrSymRecords
Application**
DataFiles
FullName
Modified
Name
Online
Parent
PasswordPrivilegeCfg
Processor
ProgramFiles
ReportOptions
Revision
RevisionNotes
RungCmntPageTitleRecords

[Close]
[DisplayReportOptions]
[Download]
[GotoDataFileElement]
[GotoProgramFile]
[ImportDataBase]
[PrintReport]
[Save]
[SaveAs]
[ShowControllerProperties]
[ShowDataFile]
[ShowDataTablesProperties]
[ShowProgramFile]
[ShowProgramFilesProperties]
[VerifyProject]
[Verify ProgramFile]

<AfterDownload>
<AfterOpen>
<AfterSave>
<BeforeClose>
<BeforeDownload>
<BeforeSave>
<BeforeSaveAs>
<FinishedReport>
<FinishedVerify>
<OnlineOfflineFileClosing>

Application**
CanAssembleEdits
CanCancelEdits
CanTestEdits
CanUntestEdits
CurrentPLC5MemSize
DefaultDriver
DestNodeOctal
DriverName
DriverTimeout
EditsActive
EditsPresent
Emulator
EncodedRouteString
Faulted
HasPasswordPrivileges
KeySwitchPosition
Name
Node
NumberOfMemSizeChoices
Online
OnlineChangesMade
ProcessorMode
Revision
Series
SubRevision
Type
[ClearAllForces]
[DisableForces]
[EnableForces]
[GetPLC5MemSizeChoicesByIndex]
[SetPLC5MemSize]

DataFiles

Application**

[Add]
[Count]
[GetDataValue]
[Item]
[Remove]
[SetDataValue]

ProgramFiles

Application**
[Add]
[Count]
[Item]
[Remove]

Processor

ReportOptions Object
RevisionNotes Object
ProgramFile Object
LadderFile Object
DataFile Object

**Returns Application Object
192 • RSLogix Automation Interface Reference Manual

RSLogix 5 Object Model Summary, continued
DataFile

Application**
CanBeDeleted
CanBeMonitored
CanChangeScope
CanChangeSize
Debug
Description
FileNumber
FormattedName
GlobalScope
InUse
LocalScope
MaxDescriptionLength
MaxNameLength
Name
NumberOfElemets
Online
ReadPrivilege
Scopeable
Type
TypeAsString
WritePrivilege

Active
Application**
Comment
DbaseID
EditsActive
EndRung
FileNumber
Modified
NumberOfInstructions
Online
Output
RungNumber
RungType
RungZoneDisplay
TempReplace
Title
Verified

Rung

AddressSymbols
Application**
ChannelConfiguration
CrossReference
CrossReferenceByAddress
CrossReferenceFileEnd
CrossReferenceFileStart
CrossReferenceSymbolEnd
CrossReferenceSymbolStart
CustomDataMonitorFileRange
CustomDataMonitorFiles
DataFileList
DataFileRange
DataFiles
InstructionComments
IOInfo
MemoryUsage
MemoryUsageFileRange
ProcessorInfo
ProgramFileList
ProgramFileRange
ProgramFiles
SymbolGroups
TitlePage

ReportOptions

LadderFile

Application**
Debug
DefaultName
Description
EditsActive
FileNumber
Formattedname
InUse
MaxDescriptionLength
MaxNameLength
Name
Online
OnlineEdits
Programmable
RamEditsPending
ReadPrivilege
Reserved
Type
WritePrivilege
[GetRung]
[GetRungAsAscii]
[InsertRungAsAscii]
[NumberOfRungs]
[RemoveRung]

RevisionNotes

Application**
InternalRevision
Revision
[Count]
[RevisionNote]

ProgramFile

Application**
Debug
DefaultName
Description
FileNumber
FormattedName
InUse
MaxDescriptionLength
MaxNameLength
Name
Online
Programmable
ReadPrivilege
Type
WritePrivilege

Application**
CurrentClass
NodePrivilegeEntryCount
[AddNodePrivilegeEntry]
[ChangeNodePrivilegeInfo]
[ClassLogin]
[DownloadPrivChanges]
[GetChannelPrivileges]
[GetDataFilePrivileges]
[GetDefaultClass]
[GetFeaturePrivileges]
[GetNodePrivilegeInfo]
[GetProgFilePrivileges]
[IsClassPasswordProtected]
[RefreshChannelPrivsFromOnline]
[RefreshPassPrivsFromOnline]
[RemoveNodePrivilegeEntry]
[SetChannelPrivileges]
[SetClassPassword]
[SetDataFilePrivileges]
[SetDefaultClass]
[SetFeaturePrivileges]
[SetProcessorPassword]
[SetProgFilePrivileges]

PasswordPrivilegeConfig

Object

Property
[Method]
<Event>

KEY
Object model diagrams • 193

RSLogix 5 Object Model Summary, Database Utilities

Object

AddrSymRecord

Above
Address
Application**
Below
Description
DeviceCode
Scope
Symbol
SymbolGroup

[SetAbove]
[SetAddress]
[SetBelow]
[SetDescription]
[SetDeviceCode]
[SetScope]
[SetSymbol]
[SetSymGroup]

AddrSymRecords

Application**
Count

[Add]
[Duplicate]
[GetRecordIndexViaAddrOrSym]
[GetRecordViaAddrOrSym]
[GetRecordViaDesc]
[GetRecordViaIndex]
[RemoveRecordViaAddrOrSym]
[RemoveRecordViaIndex]
[SearchAndReplaceDesc]

RungCmntPageTitleRecord

Address
Application**
IsAttachedToAddress
PageTitle
ProgFile
RungComment
RungNumber

[SetAddress]
[SetPageTitle]
[SetProgFileAndRung]
[SetRungComment]

RungCmntPageTitleRecords

Application**
Count

[AddRecordAttachedToProgFileAndRung]
[AddRecordAttachedToAddress]
[DuplicateViaAddress]
[DuplicateViaFileRung]
[GetRecordViaAddress]
[GetRecordViaFileRung]
[GetRecordViaIndex]
[GetRecordViaPageTitle]
[GetRecordViaRungComment]
[RemoveRecordViaAddress]
[RemoveRecordViaFileRung]
[RemoveRecordViaIndex]
[SearchAndReplacePageTitle]
[SearchAndReplaceRungComment]

Property

[Method]

<Event>

KEY
194 • RSLogix Automation Interface Reference Manual

RSLogix 500 object model summary
Application

Application
AutoSaveInterval
BackupCount
EnableAutoArrange
EnableAutoSave
EncodedRouteString
FullName
LibrarySearchPath
MaxDescriptionLineLength
MaxSymbolLength
Name
NumberOfDescriptionLines
Parent
PromptForRevNote
ProVersion
SourceSearchPath
VBAVersion
VBE
Version
Visible
WindowHandle
WindowState

[FileNew]
[FileOpen]
[GetActiveProject]
[GetProcessorTypes]
[GoOffline]
[GoOnline]
[Quit]
[Upload]

<AfterUpload>
<BeforeFileNew>
<BeforeFileOpen>
<BeforeOffline>
<BeforeOnline>
<BeforeUpload>
<ClosingAllProjects>
<Quit>

LogixProject

AddrSymRecords
Application**
DataFiles
FullName
Modified
Name
Online
Parent
Processor
ProgramFiles
ReportOptions
Revision
RevisionNotes
RungCmntPageTitleRecords

[Close]
[DisplayReportOptions]
[Download]
[GotoDataFileElement]
[GotoProgramFile]
[ImportDataBase]
[PrintReport]
[Save]
[SaveAs]
[ShowControllerProperties]
[ShowDataFile]
[ShowDataTablesProperties]
[ShowProgramFile]
[ShowProgramFilesProperties]
[VerifyProject]
[VeryifyProgramFile]

<AfterDownload>
<AfterOpen>
<AfterSave>
<BeforeClose>
<BeforeDownload>
<BeforeSave>
<BeforeSaveAs>
<FinishedReport>
<FinishedVerify>
<OnlineOfflineFileClosing>

Application**
CanAssembleEdits
CanCancelEdits
CanTestEdits
CanUntestEdits
DefaultDriver
DestNodeOctal
DriverName
DriverTimeout
EditsActive
EditsPresent
Emulator
EncodedRouteString
Faulted
KeySwitchPosition
Name
Node
Online
OnlineChangesMade
ProcessorMode
ProgramID
Type

[ClearAllForces]
[DisableForces]
[EnableForces]

DataFiles

Application**

[Add]
[Count]
[GetDataValue]
[Item]
[Remove]
[SetDataValue]

ProgramFiles

Application**

[Add]
[Item]
[Count]
[Remove]

Processor

ReportOptions Object
RevisionNotes Object
ProgramFile Object
LadderFile Object
DataFile Object

**Returns Application Object
Object model diagrams • 195

RSLogix 500 Object Model Summary, continued
DataFile

Application**
CanBeDeleted
CanBeMonitored
CanChangeScope
CanChangeSize
Debug
Description
FileNumber
FormattedName
GlobalScope
InUse
LocalScope
MaxDescriptionLength
MaxNameLength
Name
NumberOfElements
Online
Reserved
Scopeable
Type
TypeAsString

ProgramFile

Application**
Debug
DefaultName
Description
FileNumber
FormattedName
InUse
MaxDescriptionLength
MaxNameLength
Name
Online
Programmable
ProtectionSupported
Reserved
Type

AddressSymbols
Application**
ChannelConfiguration
CrossReference
CrossReferenceByAddress
CrossReferenceFileEnd
CrossReferenceFileStart
CrossReferenceSymbolEnd
CrossReferenceSymbolStart
CustomDataMonitorFileRange
CustomDataMonitorFiles
DataFileList
DataFileRange
DataFiles
InstructionComments
IOInfo
MemoryUsage
MemoryUsageFileRange
Multipoint
ProcessorInfo
ProgramFileList
ProgramFileRange
ProgramFiles
SymbolGroups
TitlePage

ReportOptions

LadderFile

Application**
Debug
DefaultName
Description
EditsActive
FileNumber
FormattedName
InUse
MaxDescriptionLength
MaxNameLength
Name
Online
OnlineEdits
Programmable
ProtectionSupported
RamEditsPending
Reserved
Type

[GetRung]
[GetRungAsAscii]
[InsertRungAsAscii]
[NumberOfRungs]
[RemoveRung]

Active
Application**
Comment
DbaseID
EditsActive
EndRung
FileNumber
Modified
NumberOfInstructions
Online
Output
RungNumber
RungType
RungZoneDisplay
TempReplace
Title
Verified

Rung

RevisionNotes

Application**
InternalRevision
Revision

[Count]
[RevisionNote]

Object

Property

[Method]

<Event>

KEY
196 • RSLogix Automation Interface Reference Manual

RSLogix 500 object model summary, database
utilities

Object

AddrSymRecord

Above
Address
Application**
Below
Description
DeviceCode
Scope
Symbol
SymbolGroup

[SetAbove]
[SetAddress]
[SetBelow]
[SetDescription]
[SetDeviceCode]
[SetScope]
[SetSymbol]
[SetSymGroup]

AddrSymRecords

Application**
Count

[Add]
[Duplicate]
[GetRecordIndexViaAddrOrSym]
[GetRecordViaAddrOrSym]
[GetRecordViaDesc]
[GetRecordViaIndex]
[RemoveRecordViaAddrOrSym]
[RemoveRecordViaIndex]
[SearchAndReplaceDesc]

RungCmntPageTitleRecord

Address
Application**
IsAttachedToAddress
PageTitle
ProgFile
RungComment
RungNumber

[SetAddress]
[SetPageTitle]
[SetProgFileAndRung]
[SetRungComment]

RungCmntPageTitleRecords

Application**
Count

[AddRecordAttachedToProgFileAndRung]
[AddRecordAttachedToAddress]
[DuplicateViaAddress]
[DuplicateViaFileRung]
[GetRecordViaAddress]
[GetRecordViaFileRung]
[GetRecordViaIndex]
[GetRecordViaPageTitle]
[GetRecordViaRungComment]
[RemoveRecordViaAddress]
[RemoveRecordViaFileRung]
[RemoveRecordViaIndex]
[SearchAndReplacePageTitle]
[SearchAndReplaceRungComment]

Property

[Method]

<Event>

KEY
Object model diagrams • 197

198 • RSLogix Automation Interface Reference Manual

RSLogix 5 and RSLogix 500 type definitions and
constants

When referring to the tables in this appendix, make sure to refer to the
appropriate listing for either the RSLogix 5 or RSLogix 500 software product.
Although the type definitions are similar their values differ.

Appendix Type definitions and
constants
Type definitions and constants • 199

lgxDataFileTypeConstants (RSLogix 5)
Used with the DataFile object and DataFiles collection. Not all may apply.

-1
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

0xff
0xfff

32768

lgxDTUNKNOWN
lgxDTBINARY
lgxINTEGER
lgxDTEXPANDER
lgxDTASCII
lgxDTBCD
lgxDTSFCSTATUS
lgxDTSTRING
lgxDTBLOCKXFER
lgxDTCONTROLNET
lgxDTTIMER
lgxDTCOUNTER
lgxDTCONTROL
lgxDTTOKENDATA
lgxDTFLOAT
lgxDTMESSAGE
lgxDTPIDBLOCK
lgxDTLONG
lgxDTMUTEX
lgxDTEVENT
lgxDTMANUALEVENT
lgxDTDOUBLE
lgxDTTIME
lgxDTINT64
lgxDTUNUSED
lgxDTOUTPUT
lgxDTINPUT
lgxDTSTATUS
lgxDTM0
lgxDTM1
lgxDTSO
lgxDTSI
lgxLABEL
lgxDTSBR
lgxDTRET
lgxDTBOOL
lgxDTNUMBEROFDATATYPES
lgxDTRESERVED1
lgxDTRESERVED2
lgxDTSYSTEMTYPES
lgxDTMAXSYSTEMTYPE
lgxUSERTYPE0

The type of data file is not recognized.
Indicates a Binary data file type.
Indicates an Integer data file type.
Indicates an Expander data file type.
Indicates the ASCII data file type.
Indicates the Binary Coded Decimal data file type.
Indicates an SFC status data file type.
Indicates a String data file type.
Indicates a Block Transfer data file type.
Indicates a ControlNet data file type.
Indicates a Timer data file type.
Indicates a Counter data file type.
Indicates a Control data file type.
Indicates a Token passing data file type.
Indicates a Floating Point data file type.
Indicates a Message data file type.
Indicates a PID Block data file type.
Indicates a Long data file type.
A Mutex file type, handshaking between 2+> asynch threads.
Indicates an Event data file type.
Indicates a Manual Event data file type.
Indicates a Double data file type.
A SoftLogix specific data type representing current date and time.
Indicates a 64-bit Integer data file type.
Indicates an unused data file.
Indicates an Output data file type.
Indicates an Input data file type.
Indicates a status data file type.
An M0 file type. (Controls operation of devices on RIO link.)
An M1 file type (Status of devices on RIO link).
Indicates a SLC I/O data file.
Indicates a SLC I/O data file.
Indicates a Label file.
Indicates a subroutine.
Not useful to object model. Used internally only.
Indicates a Boolean data file type.
Not useful to object model. Used internally only.
Reserved
Reserved
Not useful to object model. Used internally only.
Not useful to object model. Used internally only.
Not useful to object model. Used internally only.
200 • RSLogix Automation Interface Reference Manual

lgxDataFileTypeConstants (RSLogix 500)
Used with the DataFile object and DataFiles collection. Not all may apply.

-1
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
50
51
52
53
54
60
61
62
64

32768

lgxDTUNKNOWN
lgxDTOUTPUT
lgxDTINPUT
lgxDTSTATUS
lgxDTBINARY
lgxDTTIMER
lgxDTCOUNTER
lgxDTCONTROL
lgxINTEGER
lgxDTFLOAT
lgxDTRESERVED1
lgxDTUNUSED
lgxDTRESERVED2
lgxDTM1
lgxDTM0
lgxDTSTRING
lgxDTASCII
lgxDTLONG
lgxDTHSCOUNTER
lgxDTPULSE_TRAIN_OUT
lgxDTMESSAGE
lgxDTSEL_TIMED_INT
lgxDTEVENT_INPUT_INT
lgxDTPIDBLOCK
lgxDTREAL_TIME_CLOCK
lgxDTBASE_HARDWARE_INFO
lgxDTMEM_MODULE_INFO
lgxDTDATA_ACCESS_TERM_INFO
lgxDTTRIM_POT_INFO
lgxDTCOM_STATUS
lgxDTIOMOD_STATUS
lgxDTPULSE_WIDTH_MOD
lgxDTDATA_LOG_STATUS
lgxDTPLS
lgxDTBCD
lgxDTBLOCKXFER
lgxDTSFCSTATUS
lgxDTTOKENDATA
lgxDTCONTROLNET
lgxLABEL
lgxDTSBR
lgxDTRET
lgxDTBOOL
lgxDTUSERTYPE0

The type of data file is not recognized.
Indicates an Output data file type.
Indicates an Input data file type.
Indicates a status data file type.
Indicates a Binary data file type.
Indicates a Timer data file type.
Indicates a Counter data file type.
Indicates a Control data file type.
Indicates an Integer data file type.
Indicates a Floating Point data file type.
Reserved
Indicates an unused data file.
Reserved
An M1 file type (Status of devices on RIO link).
An M0 file type. (Controls operation of devices on RIO link.)
Indicates a String data file type.
Indicates the ASCII data file type.
Indicates a Long data file type.
Indicates a high speed counter data type.
Indicates a pulse train output data type.
Indicates a Message data file type.
Indicates a selectable timed interrupt.
Indicates an event input interrupt.
Indicates a PID Block data file type.
Indicates a real time clock data type.
Indicates the BHI (Base Hardware Information) function file.
Indicates the MMI (Memory Module Information) function file.
Indicates the DAT (Data Access Terminal) function file.
Indicates the TPI (Trim Pot Information) function file.
Indicates a communications status data file type.
Indicates an I/O module status data file type.
Indicates a pulse-width module data file type.
Indicates a data log status data file type.
Indicates a Programmable Limit Switch data file type.
Indicates the Binary Coded Decimal data file type.
Indicates a Block Transfer data file type.
Indicates an SFC status data file type.
Indicates a Token passing data file type.
Indicates a ControlNet data file type.
Indicates a Label file.
Indicates a subroutine.
Not useful to object model. Used internally only.
Indicates a Boolean data file type.
Not useful to object model. Used internally only.
Type definitions and constants • 201

lgxKeyPositionConstants (RSLogix 5 and 500)
Used with the Processor object.

lgxOnlineAction (RSLogix 5 and 500)
Used with the Application and LogixProject objects.

0
1
2
3

lgxUnknownKey
lgxKeyRemote
lgxKeyProgram
lgxKeyRun

Processor keyswitch position is not known.
Processor keyswitch in Remote position.
Processor keyswitch in Program position.
Processor keyswitch in Run position.

1
2

lgxGoOnline
lgxGoOffline

Instructs application to go online with the processor.
Instructs application to go offline with the processor.
202 • RSLogix Automation Interface Reference Manual

lgxProcessorTypeConstants (RSLogix 5)
Used with the Application and Processor objects.

-1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

lgxLUNKNOWNPROC
lgxPLC_515
lgxPLC_512
lgxPLC_5VME
lgxPLC_525
lgxPLC_510
lgxPLC_540
lgxPLC_560
lgxPLC_540L
lgxPLC_560L
lgxPLC_530
lgxPLC_511
lgxPLC_520
lgxPLC_540VME
lgxPLC_540VMEL
lgxPLC_520E
lgxPLC_540E
lgxPLC_580
lgxPLC_516
lgxPLC_526
lgxPLC_536
lgxPLC_546
lgxPLC_546L
lgxPLC_566
lgxPLC_566L
lgxPLC_586
lgxPLC_580E
lgxPLC_530VME
lgxPLC_580VME ,
lgxPLC_520C
lgxPLC_540C
lgxPLC_560C
lgxPLC_580C
lgxPLC_520C2
lgxPLC_540C2
lgxPLC_560C2
lgxPLC_580C2
lgxPLC_526C2
lgxPLC_546C2
lgxSOFTLOGIX_5
lgxPLC_580VMEL
Type definitions and constants • 203

lgxProcessorTypeConstants (RSLogix 500)
Used with the Application and Processor objects.

-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
26
27
28
29
30
31
32
33
34
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
57
154
155
156
157

lgxLUNKNOWNPROC
lgx1747_L20A
lgx1747_L20B
lgx1747_L20C_F
lgx1747_L20D
lgx1747_L20E_G
lgx1747_L20L_N
lgx1747_L20P
lgx1747_L20R
lgx1747_L30A
lgx1747_L30B
lgx1747_L30C
lgx1747_L30D
lgx1747_L30L
lgx1747_L30P
lgx1747_L40A
lgx1747_L40B
lgx1747_L40C_F
lgx1747_L40E
lgx1747_L40L
lgx1747_L40P
lgx1747_L511
lgx1747_L514
lgx1747_L524
lgx1747_L532
lgxMICRO
lgx1747_L532B
lgx1747_L542A
lgx1747_L532C_D
lgx1747_L542B
lgx1747_L541
lgx1747_ L543
lgxMICRO_DH485_
lgx1747_L551
lgx1747_L552
lgx1747_L553
lgx1747_L531
lgx1747_L532E
lgx1747_541C
lgx1747_542C
lgx1747_543C
lgxMICRO_ANALOG
lgx1747_551A
lgx1747_552A
lgx1747_553A
lgxMICRO1500LSP_A
lgxMICRO1200A
lgxMICRO1500LSP_B
lgxMICRO1500LRP_B
lgxMICRO1200B
lgxMICRO1500LSP_C
lgxMICRO1500LRP_C
lgxMICRO1200C
lgx1747_L531E
lgx1747_L551B
lgx1747_L552B
lgx1747_L553B
204 • RSLogix Automation Interface Reference Manual

lgxProcOnlineState (RSLogix 5)
Used with the Processor and LogixProject objects. Not all apply. Refer to the
chapter information for your specific use.

lgxProcOnlineState (RSLogix 500)
Used with the Processor and LogixProject objects. Not all apply. Refer to the
chapter information for your specific use.

0
1
2
3
4
5
6
7
8
9

lgxOFFLINE
lgxDOWNLOAD
lgxFAULTED
lgxHARDPROGRAM
lgxHARDTEST
lgxHARDRUN
lgxREMOTEPROG
lgxREMOTETEST
lgxREMOTERUN
lgxBREAKPOINTSTOPPED

Processor mode is offline.
Processor mode is download.
Processor mode is faulted.
Processor mode is hard program.
Processor mode is hard test
Processor mode is hard run.
Processor mode is remote program.
Processor mode is remote test.
Processor mode is remote run.
Processor mode is breakpoint stopped.

0
1
2
3
4
5
6
7
8
9
10
11
12
13

lgxOFFLINE
lgxDOWNLOAD
lgxREMOTEPROG
lgxSUSPEND
lgxREMOTERUN
lgxTESTCONTINUOUS
lgxTESTSINGLESCAN
lgxTESTSTEPNOTRUNNING
lgxTESTSTEPRUNNING
lgxHARDDOWNLOAD
lgxHARDPROGRAM
lgxHARDSUSPEND
lgxHARDRUN
lgxFAULTED

Processor mode is offline.
Processor mode is download.
Processor mode is remote program.
Suspend instruction executed while in remote program mode.
Processor mode is remote run.
Processor is in continuous test mode.
Processor is in single scan test mode.
Processor test step mode is not running.
Processor test step mode is running.
Processor mode is hard download.
Processor mode is hard program.
Suspend instruction executed while in hard program mode.
Processor mode is hard run.
Processor mode is faulted.
Type definitions and constants • 205

lgxProgramFileTypeConstants (RSLogix 5)
Used with the ProgramFile object and ProgramFiles collections. Not all
apply. Refer to the chapter information for your specific use.

lgxProgramFileTypeConstants (RSLogix 500)
Used with the ProgramFile object and ProgramFiles collections. Not all
apply. Refer to the chapter information for your specific use..

lgxRungZoneTypes (RSLogix 5 and 500)
Used with the Rung object.

lgxSaveAction (RSLogix 5 and 500)
Used with the LogixProject object. The only valid selections appear in the
table below.

0
1
2
3
4
5
6
7
8
9
10
11

lgxHEADER
lgxLADDER
lgxSFCNEW
lgxSFCOLD
lgxSTX
lgxIOFILE
lgxSFCRTL
lgxPLC_2
lgxCONFIG
lgxCAR
lgxCOPROC
lgxUNUSED

Indicates a header program file type.
Indicates a ladder program file type.
Indicates a new sequential function chart program file type.
Indicates an old sequential function chart program file type.
Indicates a structured text program file type.
Indicates an input/output program file type.
Not useful to object model. Used internally only.
Indicates a PLC-2 program file type.
Indicates a configuration file type.
Indicates a CAR program file type.
Not useful to object model. Used internally only.
Indicates an unused program file.

0
1
2
3

lgxHEADER
lgxLADDER
lgxSFC
lgxUNUSED

Indicates a header program file type.
Indicates a ladder program file type.
Indicates a sequential function chart program file type.
Indicates an unused program file.

0
1
2
3
4
5
6
7

lgxPlainRung
lgxReplaceRung
lgxInsertRung
lgxDeleteRung
lgxEditRung
lgxTmpInsertRung
lgxTmpReplaceRung
lgxAnyIRDRung

Indicates a plain, unedited rung.
Indicates a replaced rung.
Indicates an inserted rung.
Indicates a deleted rung.
Indicates an edited rung.
Indicates a temporary inserted rung.
Indicates a temporary replacement rung.
Indicates any type of rung.

0
1
2
3

lgxNoAction
lgxSaveNativeExternalDB
lgxSaveAIExternalDB
lgxSaveAPSExternalDB

Indicates no external database files saved.
Indicates database save to Native External file format.
Indicates database save to AI External file format.
Indicates database save to APS External file format.
206 • RSLogix Automation Interface Reference Manual

lgxUpDownloadAction (RSLogix 5 and 500)
Used with the Application object.

lgxWindowStateConstants (RSLogix 5 and 500)
Used with the Application object.

lgxImportDBTypes (RSLogix 5 and 500)
Used with the LogixProject object.

lgxBinary (RSLogix 5)
Used with the PasswordPrivilegeCfg object.

lgxChannel (RSLogix 5)
Used with the PasswordPrivilegeCfg object.

1
2
3

lgxUploadCreateNew
lgxUploadCurrent
lgxUploadPath

Upload and create new project.
Upload and use the current project.
Upload and use the project specified at path indicated.

0
1
2

lgxWindowStateNormal
lgxWindowStateMinimized
lgxWindowStateMaximized

Show application in normal window.
Application is minimized to an icon.
Application is maximized to full screen.

0 lgxImportAddrSymDB Import the address/symbol database.

0
1
2

lgxEnabled
lgxDisabled
lgxInvalid

0
1
2
3
4
5
6
7

lgxPLC5_Ch0
lgxPLC5_Ch1A
lgxPLC5_Ch1B
lgxPLC5_Ch2A
lgxPLC5_Ch2B
lgxPLC5_Ch2
lgxPLC5_Ch3A
lgxPLC5_Offline

Channel 0
Channel 1A
Channel 1B
Channel 2A
Channel 2B
Channel 2
Channel 3A
Offline
Type definitions and constants • 207

lgxPrivilege (RSLogix 5)
Used with the PasswordPrivilegeCfg object.

lgxPrivilegeType (RSLogix 5)
Used with the PasswordPrivilegeCfg object.

0
1
2
3
4

lgxNoPriv
lgxReadPriv
lgxWritePriv
lgxReadWritePriv
lgxFailedToGetPriv

0
1
2
3
4
5
6
7
8
9
10
11
12
13

lgxPrivModify
lgxPrivDataFileCreateDelete
lgxPrivProgFileCreateDelete
lgxPrivLogicalWrite
lgxPrivPhysicalWrite
lgxPrivLogicalRead
lgxPrivPhysicalRead
lgxPrivModeChange
lgxPrivIOForce
lgxPrivSFCForce
lgxPrivClearMemory
lgxPrivDownload
lgxPrivOnlineEdit
lgxPrivEditPassword
208 • RSLogix Automation Interface Reference Manual

lgxErrorTypes (RSLogix 5 and 500)
Refer to Appendix C for complete information about how you might use the
lgxErrorType definition for error handling. .

Decimal Value Error Type Definition Hex Value

-2147220981
-2147220957
-2147220964
-2147220923
-2147220969
-2147220934
-2147220991
-2147220966
-2147220918
-2147220978
-2147220984
-2147220932
-2147220961
-2147220971
-2147220942
-2147220977
-2147220975
-2147220970
-2147220973
-2147220972
-2147220968
-2147220924
-2147220976
-2147220945
-2147220979
-2147220935
-2147220920
-2147220917
-2147220922
-2147220926
-2147220987
-2147220919
-2147220967
-2147220925
-2147220963
-2147220962
-2147220958

lgxError_Abort_Download
lgxError_ACH_Load_Failed
lgxError_Autoconfig_Read_Failed
lgxError_Automation_Inhibited
lgxError_Backup_Exists
lgxError_BOOTP_Cycle_Power
lgxError_Cancel_Delete_All
lgxError_Cannot_Connect_To_Proc
lgxError_Cannot_Find_Activation
lgxError_Comm_Problem
lgxError_Comms_Not_Set
lgxError_DataTable_Upload_Failed
lgxDB_Create_Failed
lgxError_DB_Error
lgxError_Default_Program
lgxError_Download_Failed
lgxError_Enable_Forces_Failed
lgxError_Failed_Create_DB
lgxError_Failed_Del_Temp_DB
lgxError_Failed_Init_DB
lgxError_Failed_Online
lgxError_File_Is_Read_Only
lgxError_Forces_Exist
lgxError_General_IO_Error
lgxError_Incompatible_Download_Types
lgxError_Incorrect_Class_Priv
lgxError_Invalid_Argument
lgxError_Invalid_Class
lgxError_Invalid_Data_File_Type
lgxError_Invalid_During_Compare
lgxError_Invalid_File_Extension
lgxError_Invalid_File_Size
lgxError_Invalid_IO_Object
lgxError_Invalid_Path_Specified
lgxError_Invalid_Rack
lgxError_Invalid_Rack_Config
lgxError_Invalid_RSS_File

8004020B
80040223
8004021C
80040245
80040217
8004023A
80040201
8004021A
8004024A
8004020E
80040208
8004023C
8004021F
80040215
80040232
8004020F
80040211
80040216
80040213
80040214
80040218
80040244
80040210
8004022F
8004020D
80040239
80040248
8004024B
80040246
80040242
80040205
80040249
80040219
80040243
8004021D
8004021E
80040222

continued on following page...
Type definitions and constants • 209

.

-2147220921
-2147220955
-2147220952
-2147220956
-2147220953
-2147220954
-2147220939
-2147220929
-2147220965
-2147220928
-2147220982
-2147220988
-2147220940
-2147220938
-2147220947
-2147220990
-2147220937
-2147220986
-2147220974
-2147220989
-2147220959
-2147220927
-2147220933
-2147220980
-2147220944
-2147220985
-2147220941
-2147220950
-2147220948
-2147220951
-2147220943
-2147220930
-2147220931
-2147220960
-2147220949
-2147220936
-2147220992
-2147220983
-2147220946

...continued (lgxErrorTypes)
lgxError_Invalid_Secure_Proc_Operation
lgxError_Invalid_SLC_File
lgxError_Library_Failure
lgxError_Library_Load_Failed
lgxError_Library_Partial_Load_Failed
lgxError_Library_Warnings_Exist
lgxError_Multiple_Files_Found
lgxError_Must_Be_Offline
lgxError_No_AutoConfig
lgxError_No_Checksum
lgxError_No_Controller_Response
lgxError_No_Future_Access
lgxError_No_Match_Found
lgxError_No_Offline_DataFiles
lgxError_No_Processor
lgxError_Not_Deletable
lgxError_Not_Done_Uploading
lgxError_Not_Offline
lgxError_Not_Program_Mode
lgxError_Not_Remote_Run
lgxError_Old_File_Format
lgxError_Online_Proc_Name_Invalid
lgxError_Open_Doc_Failed
lgxError_Passwords_Dont_Match
lgxError_Processor_Faulted
lgxError_Program_Errors
lgxError_Pswd_Failed_Login
lgxError_Rack_Out_Of_Range
lgxError_Rack_Size_Out_Of_Range
lgxError_RAM_Edits_Exist
lgxError_Remote_Emulator
lgxError_Save_In_Progress
lgxError_Secure_Proc_Path_Not_Found
lgxError_SLC_Func_Not_Available
lgxError_Slot_Out_Of_Range
lgxError_STX_Not_Supported
lgxError_Unexpected
lgxError_Unknown_Proc
lgxError_Unsupported_Feature

80040247
80040225
80040228
80040224
80040227
80040226
80040235
8004023F
8004021B
80040240
8004020A
80040204
80040234
80040236
8004022D
80040202
80040237
80040206
80040212
80040203
80040221
80040241
8004023B
8004020C
80040230
80040207
80040233
8004022A
8004022C
80040229
80040231
8004023E
8004023D
80040220
8004022B
80040238
80040200
80040209
8004022E
210 • RSLogix Automation Interface Reference Manual

Versions 5.5 and greater of RSLogix have functionality (addition of the
lgxErrorType type) that allows an automation client to determine which
exceptions have been thrown.
The following example demonstrates how the lgxErrorType can be used to
handle exceptions. Alternately you can choose to just check the error number
using a lgxErrorType value.

Private Sub btnMakeVisible_Click()
Dim ErrorType As RSLogix5.lgxErrorTypes
ErrorType = lgxError_UNEXPECTED
On Error GoTo Failed

 If g_Application.Visible = True Then
 g_Application.Visible = False
 Else
 g_Application.Visible = True
 End If
 Exit Sub

Failed:
 MsgBox "Error # = " & Err.Number & " Error Desc = " & Err.Description
 If Err.Number = ErrorType Then
 MsgBox "lgxError_UNEXPECTED"
 ElseIf Err.Number = lgxError_CANNOT_FIND_ACTIVATION Then
 MsgBox "lgxError_CANNOT_FIND_ACTIVATION"
 End If

End Sub

Appendix Handling errors
Handling errors • 211

Any of the following lgxErrorTypes may be returned.

Decimal Value Error Type Definition Hex Value

-2147220981
-2147220957
-2147220964
-2147220923
-2147220969
-2147220934
-2147220991
-2147220966
-2147220918
-2147220978
-2147220984
-2147220932
-2147220961
-2147220971
-2147220942
-2147220977
-2147220975
-2147220970
-2147220973
-2147220972
-2147220968
-2147220924
-2147220976
-2147220945
-2147220979
-2147220935
-2147220920
-2147220917
-2147220922
-2147220926
-2147220987
-2147220919
-2147220967
-2147220925
-2147220963
-2147220962
-2147220958
-2147220921
-2147220955
-2147220952
-2147220956
-2147220953
-2147220954
-2147220939
-2147220929
-2147220965
-2147220928
-2147220982

lgxError_Abort_Download
lgxError_ACH_Load_Failed
lgxError_Autoconfig_Read_Failed
lgxError_Automation_Inhibited
lgxError_Backup_Exists
lgxError_BOOTP_Cycle_Power
lgxError_Cancel_Delete_All
lgxError_Cannot_Connect_To_Proc
lgxError_Cannot_Find_Activation
lgxError_Comm_Problem
lgxError_Comms_Not_Set
lgxError_DataTable_Upload_Failed
lgxDB_Create_Failed
lgxError_DB_Error
lgxError_Default_Program
lgxError_Download_Failed
lgxError_Enable_Forces_Failed
lgxError_Failed_Create_DB
lgxError_Failed_Del_Temp_DB
lgxError_Failed_Init_DB
lgxError_Failed_Online
lgxError_File_Is_Read_Only
lgxError_Forces_Exist
lgxError_General_IO_Error
lgxError_Incompatible_Download_Types
lgxError_Incorrect_Class_Priv
lgxError_Invalid_Argument
lgxError_Invalid_Class
lgxError_Invalid_Data_File_Type
lgxError_Invalid_During_Compare
lgxError_Invalid_File_Extension
lgxError_Invalid_File_Size
lgxError_Invalid_IO_Object
lgxError_Invalid_Path_Specified
lgxError_Invalid_Rack
lgxError_Invalid_Rack_Config
lgxError_Invalid_RSS_File
lgxError_Invalid_Secure_Proc_Operation
lgxError_Invalid_SLC_File
lgxError_Library_Failure
lgxError_Library_Load_Failed
lgxError_Library_Partial_Load_Failed
lgxError_Library_Warnings_Exist
lgxError_Multiple_Files_Found
lgxError_Must_Be_Offline
lgxError_No_AutoConfig
lgxError_No_Checksum
lgxError_No_Controller_Response

8004020B
80040223
8004021C
80040245
80040217
8004023A
80040201
8004021A
8004024A
8004020E
80040208
8004023C
8004021F
80040215
80040232
8004020F
80040211
80040216
80040213
80040214
80040218
80040244
80040210
8004022F
8004020D
80040239
80040248
8004024B
80040246
80040242
80040205
80040249
80040219
80040243
8004021D
8004021E
80040222
80040247
80040225
80040228
80040224
80040227
80040226
80040235
8004023F
8004021B
80040240
8004020A

continued on next page...
212 • RSLogix Automation Interface Reference Manual

.

...continued

-2147220988
-2147220940
-2147220938
-2147220947
-2147220990
-2147220937
-2147220986
-2147220974
-2147220989
-2147220959
-2147220927
-2147220933
-2147220980
-2147220944
-2147220985
-2147220941
-2147220950
-2147220948
-2147220951
-2147220943
-2147220930
-2147220931
-2147220960
-2147220949
-2147220936
-2147220992
-2147220983
-2147220946

lgxError_No_Future_Access
lgxError_No_Match_Found
lgxError_No_Offline_DataFiles
lgxError_No_Processor
lgxError_Not_Deletable
lgxError_Not_Done_Uploading
lgxError_Not_Offline
lgxError_Not_Program_Mode
lgxError_Not_Remote_Run
lgxError_Old_File_Format
lgxError_Online_Proc_Name_Invalid
lgxError_Open_Doc_Failed
lgxError_Passwords_Dont_Match
lgxError_Processor_Faulted
lgxError_Program_Errors
lgxError_Pswd_Failed_Login
lgxError_Rack_Out_Of_Range
lgxError_Rack_Size_Out_Of_Range
lgxError_RAM_Edits_Exist
lgxError_Remote_Emulator
lgxError_Save_In_Progress
lgxError_Secure_Proc_Path_Not_Found
lgxError_SLC_Func_Not_Available
lgxError_Slot_Out_Of_Range
lgxError_STX_Not_Supported
lgxError_Unexpected
lgxError_Unknown_Proc
lgxError_Unsupported_Feature

80040204
80040234
80040236
8004022D
80040202
80040237
80040206
80040212
80040203
80040221
80040241
8004023B
8004020C
80040230
80040207
80040233
8004022A
8004022C
80040229
80040231
8004023E
8004023D
80040220
8004022B
80040238
80040200
80040209
8004022E
Handling errors • 213

214 • RSLogix Automation Interface Reference Manual

There is significant commonality between the RSLogix 5 and RSLogix 500
object models. Exceptions are listed here.

Appendix General differences in
the RSLogix 5 and 500
automation interfaces
General differences in the RSLogix 5 and 500 automation interfaces • 215

PasswordPrivilegeConfig
All members of the PasswordPrivilegeConfig object apply to RSLogix 5 only.

DataFile object

ProgramFile object

ReportOptions object

LogixProject object

Properties RSLogix 5 RSLogix 500

NumberOfElements
(integer)

Read/Write. Returns the number
of elements in the data file.

Read Only.

Reserved (boolean) Does not exist. Read Only. Returns True if the
data file is reserved.

ReadPrivilege
(boolean)

Read Only. Returns whether the
program file is read-enabled under
the current privilege class.

Does not exist.

WritePrivilege
(boolean)

Read Only. Returns whether the
program file is write-enabled
under the current privilege class.

Does not exist.

Properties RSLogix 5 RSLogix 500

ProtectionSupported
(boolean)

Does not exist. Read only. Returns whether
or not protection is supported
by this program file.

Reserved (boolean) Does not exist. Read Only. Returns True if
the program file is reserved.

ReadPrivilege
(boolean)

Read Only. Returns whether the
program file is read-enabled under
the current privilege class.

Does not exist.

WritePrivilege
(boolean)

Read Only. Returns whether the
program file is write-enabled
under the current privilege class.

Does not exist.

Properties RSLogix 5 RSLogix 500

Multipoint (boolean) Does not exist. Read/Write. If set to True, a
multipoint monitor report is
included.

Properties RSLogix 5 RSLogix 500

PasswordPrivilegeCfg Returns the Password/Privilege
configuration for the RSLogix 5
processor.

Does not exist.
216 • RSLogix Automation Interface Reference Manual

Processor object

Ladder object

Properties RSLogix 5 RSLogix 500

CurrentPLC5MemSize
(long)

Read only. Returns the processor
memory size.

Does not exist.

HasPasswordPrivileges
(boolean)

Read only. Returns if the
processor supports privileges.

Does not exist.

NumberOfMemSizeChoices
(short)

Read only. Returns how many
choices of memory size you have
for the current processor.

Does not exist.

ProgramID (integer) Does not exist. Read Only. Returns
the 4-byte error check
(CRC) of the program.

Series (integer) Read/Write. Sets or returns the
series # of the processor.

Does not exist.

Revision (integer) Read/Write. Sets or returns the
revision # of the processor.

Does not exist.

SubRevision (integer) Read/Write. Sets or returns the
subrevision # of the processor.

Does not exist.

Methods RSLogix 5 RSLogix 500
GetPLC5MemSizeChoiceBy
Index (long)

Gets the size of the processor’s
memory.

Does not exist.

SetPLC5MemSize Sets the memory size of the
processor.

Does not exist.

Properties RSLogix 5 RSLogix 500

ProtectionSupported
(Boolean)

Does not exist. Read Only. Returns the
attribute of protection
supported by this ladder file.

ReadPrivilege
(Boolean)

Read Only. Returns whether the
ladder file is read-enabled under
the current privilege class.

Does not exist.

WritePrivilege
(Boolean)

Read Only. Returns whether the
ladder file is write-enabled under
the current privilege class.

Does not exist.
General differences in the RSLogix 5 and 500 automation interfaces • 217

218 • RSLogix Automation Interface Reference Manual

Index
A
Above property • 146
Active property • 110
Add method • 58, 76, 138
AddRecordAttachedToAddress method • 155
AddRecordAttachedToProgFileAndRung method
• 154
Address property • 146, 166
AddressSymbols property • 128
AddrSymRecord

about • 145
AddrSymRecord object • 145

methods • 147
properties • 146

AddrSymRecords
about • 137

AddrSymRecords collection • 137
methods • 138
properties • 138

AddrSymRecords property • 26
AfterDownload event • 36
AfterOpen event • 36
AfterSave event • 37
AfterUpload event • 18
Application object • 9, 25, 45, 57, 65, 75, 85, 95,
109, 119, 127, 137, 145, 153, 165, 171

about • 9
events • 18
example of use • 22
methods • 13
properties • 10

Application property • 10, 26, 46, 57, 66, 76, 86, 96,
110, 120, 128, 138, 146, 154, 166, 172
Automating the Documentation Database Editor •
4
Automating the Ladder Logic Editor • 3
AutoSaveInterval property • 11

B
BackupCount property • 11

BeforeClose event • 37
BeforeDownload event • 38
BeforeFileNew event • 19
BeforeFileOpen event • 19
BeforeOffline event • 20
BeforeOnline event • 20
BeforeSave event • 38
BeforeSaveAs event • 39
BeforeUpload event • 21
Below property • 146

C
CanAssembleEdits property • 46
CanBeDeleted property • 86
CanBeMonitored property • 86
CanCancelEdits property • 46
CanChangeScope property • 86
CanChangeSize property • 86
CanTestEdits property • 46
CanUntestEdits property • 46
ChannelConfiguration property • 128
Chapter summaries • 3
ClearAllForces method • 49
Close method • 28
ClosingAllProjects event • 21
Collections

AddrSymRecords • 137
DataFiles • 75
ProgramFiles • 57
RungCmntPageTitleRecords • 153

Comment property • 110
Constants (RSLogix 5) • 199
Constants (RSLogix 500) • 199
Count method • 59, 77, 120
Count property • 138, 154
CrossReference property • 128
CrossReferenceByAddress property • 129
CrossReferenceFileEnd property • 129
CrossReferenceFileStart property • 129
CrossReferenceSymbolEnd property • 129
Index • 219

CrossReferenceSymbolStart property • 129
CurrentClass property • 172
CurrentPLC5MemSize property • 47
CustomDataMonitorFileRange property • 130
CustomDataMonitorFiles property • 130

D
DataFile object • 85

about • 85
events • 88
example of use • 89
methods • 88
properties • 86

DataFileList property • 130
DataFileRange property • 130
DataFiles collection • 75

about • 75
example of use • 79
methods • 76
properties • 75

DataFiles property • 27, 130
DbaseID property • 110
Debug property • 66, 86, 96
DefaultDriver property • 47
DefaultName property • 66, 96
Description property • 66, 86, 96, 146
DestNodeOctal property • 47
DeviceCode property • 146
Diagram of object models for 5 and 500 • 191
Differences between RSLogix 5 and 500 • 215

DataFile object • 216
Ladder object • 217
LogixProject object • 216
PasswordPrivilegeConfig object • 216
Processor object • 217
ProgramFile object • 216
ReportOptions object • 216

DisableForces method • 50
DisplayReportOptions method • 28
Download method • 29
DriverName property • 47
DriverTimeout property • 47
Duplicate method • 139
DuplicateViaAddress method • 156
DuplicateViaFileRung method • 156

E
EditsActive property • 47, 96, 110
EditsPresent property • 47
Emulator property • 47
EnableAutoArrange property • 11
EnableAutoSave property • 11
EnableForces method • 50
EncodedRouteString property • 11, 47
EndRung property • 110
Error handling • 211
Examples

Application object form and code • 22
DataFile object form and code • 89
DataFiles collection form and code • 79
LadderFile object form and code • 101
LogixProject object form and code • 41
Processor object form and code • 51
ProgramFile object form and code • 68
ProgramFiles collection form and code • 60
ReportOptions object form and code • 133
RevisionNote object form and code • 121
Rung object form and code • 112

F
Faulted property • 47
FileNew method • 13
FileNumber property • 66, 87, 96, 110
FileOpen method • 14
FinishedReport event • 39
FinishedVerify event • 40
FormattedName property • 67, 87, 97
FullName property • 11, 27

G
GetActiveProject method • 15
GetChannelPrivileges method • 176
GetDataValue method • 77
GetDefaultClass method • 178
GetFeaturePrivileges method • 179
GetPLC5MemSizeChoiceByIndex method • 50
GetProcessorTypes method • 15
GetRecordIndexViaAddrOrSym method • 139
GetRecordViaAddress method • 157
GetRecordViaAddrOrSym method • 140
GetRecordViaDesc method • 140
GetRecordViaFileRung method • 157
220 • RSLogix Automation Interface Reference Manual

GetRecordViaIndex method • 141, 158
GetRecordViaPageTitle method • 159
GetRecordViaRungComment method • 159
GetRung method • 98
GetRungAsAscii method • 99
GlobalScope property • 87
GoOffline method • 15
GoOnline method • 16
GotoDataFileElement method • 29
GotoProgramFile method • 30
Graphical summary of object models • 191

H
HasPasswordPrivileges property • 48

I
Ideas about use • 2
ImportDataBase method • 31
InsertRungAsAscii method • 99
InstructionComments property • 130
InternalRevision property • 120
InUse property • 67, 87, 97
IOInfo property • 131
IsAttachedToAddress property • 166
IsClassPasswordProtected method • 182
Item method • 59, 77

K
KeySwitchPosition property • 48

L
LadderFile object • 95

about • 95
example of use • 101
methods • 98
properties • 96

lgxBinary
(RSLogix 5) • 207

lgxChannel
(RSLogix 5) • 207

lgxDataFileTypeConstants
(RSLogix 5) • 200
(RSLogix 500) • 201

lgxErrorTypes
(RSLogix 5 and 500) • 209

lgxImportDBTypes

(RSLogix 5 and 500) • 207
lgxKeyPositionConstants

(RSLogix 5 and 500) • 202
lgxOnlineAction

(RSLogix 5 and 500) • 202
lgxPrivilege

(RSLogix 5) • 208
lgxPrivilegeType

(RSLogix 5 and 500) • 208
lgxProcessorTypeConstants

(RSLogix 5) • 203
(RSLogix 500) • 204

lgxProcOnlineState
(RSLogix 5) • 205
(RSLogix 500) • 205

lgxProgramFileTypeConstant
(RSLogix 5) • 206
(RSLogix 500) • 206

lgxRungZoneTypes
(RSLogix 5 and 500) • 206

lgxSaveAction
(RSLogix 5 and 500) • 206

lgxUpDownloadAction
(RSLogix 5 and 500) • 207

lgxWindowStateConstants
(RSLogix 5 and 500) • 207

LibrarySearchPath property • 11
LocalScope property • 87
LogixProject object • 25

about • 25
events • 36
example of use • 41
methods • 28
properties • 26

M
MaxDescriptionLength property • 67, 87, 97
MaxDescriptionLineLength property • 11
MaxNameLength property • 67, 87, 97
MaxSymbolLength property • 11
MemoryUsage property • 131
MemoryUsageFileRange property • 131
Modified property • 27, 110
Multipoint property • 131
Index • 221

N
Name property • 12, 27, 48, 67, 87, 97
Node property • 48
NodePrivilegeEntryCount property • 172
NumberOfDescriptionLines property • 12
NumberOfElements property • 87
NumberOfInstructions property • 110
NumberOfMemSizeChoices property • 48
NumberOfRungs method • 100

O
Object Model

graphically illustrated • 191
Objects

AddrSymRecord • 145
Application • 9, 25, 45, 57, 65, 75, 85, 95, 109,

119, 127, 137, 145, 153, 165, 171
DataFile • 85
LadderFile • 95
LogixProject • 25
PasswordPrivilegeConfig • 171
Processor • 45
ProgramFile • 65
ProgramFiles • 57
ReportOptions • 127
RevisionNotes • 119
Rung • 109
RungCmntPageTitleRecord • 165

OfflineClassLogin method • 175
Online property • 27, 48, 67, 87, 97, 111
OnlineChangesMade property • 48
OnlineEdits property • 97
OnlineOfflineFileClosing event • 40
Output property • 111

P
PageTitle property • 166
Parent property • 12, 27
PasswordPrivilegeCfg property • 27
PasswordPrivilegeConfig object • 171

about • 171
methods • 172
properties • 172

PrintReport method • 31
Processor object • 45

about • 45

example of use • 51
methods • 49
properties • 46

Processor property • 27
ProcessorInfo property • 131
ProcessorMode property • 48
ProgFile property • 166
ProgramFile object • 65

about • 65
example of use • 68
properties • 66

ProgramFileList property • 131
ProgramFileRange property • 132
ProgramFiles Collection • 57
ProgramFiles collection

about • 57
example of use • 60
methods • 58
properties • 57

ProgramFiles property • 27, 132
ProgramID property • 49
Programmable property • 67, 97
Programming tips • 6
PromptForRevNote property • 12
ProtectionSupported property • 67, 97
ProVersion property • 12

Q
Quit event • 21
Quit method • 17

R
RamEditsPending property • 97
ReadPrivilege property • 67, 88, 98
Remove method • 60, 78
RemoveRecordViaAddress method • 160
RemoveRecordViaAddrorSym method • 142
RemoveRecordViaFileRung method • 161
RemoveRecordViaIndex method • 142, 161
RemoveRung method • 100
ReportOptions object • 127

about • 127
example of use • 133
properties • 128

ReportOptions property • 27
Reserved property • 67, 88, 98
222 • RSLogix Automation Interface Reference Manual

Revision property • 27, 49, 120
RevisionNote method • 121
RevisionNote object

example of use • 121
RevisionNotes

methods • 120
RevisionNotes object • 119

about • 119
properties • 120

RevisionNotes property • 28
Rung object • 109

about • 109
properties • 110

RungCmntPageTitleRecord
about • 165

RungCmntPageTitleRecord object • 165
methods • 167
properties • 166

RungCmntPageTitleRecords collection • 153
about • 153
methods • 154
properties • 154

RungCmntPageTitleRecords property • 28
RungComment property • 166
RungFile object

example of use • 112
RungNumber property • 111, 166
RungType property • 111
RungZoneDisplay property • 111

S
Save method • 32
SaveAs method • 32
Scope property • 147
Scopeable property • 88
SearchAndReplaceDesc method • 143
SearchAndReplacePageTitle method • 162
SearchAndReplaceRungComment method • 163
Series property • 49
SetAbove method • 147
SetAddress method • 148, 167
SetBelow method • 148
SetClassPassword method • 185
SetDataValue method • 78
SetDefaultClass method • 187
SetDescription method • 149

SetDeviceCode method • 149
SetFeaturePrivileges method • 187
SetPageTitle method • 167
SetPLC5MemSize method • 51
SetProcessorPassword method • 188
SetProgFileAndRung method • 168
SetRungComment method • 168
SetScope method • 151
SetSymbol method • 151
SetSymGroup method • 152
ShowControllerProperties method • 33
ShowDataFile method • 33
ShowDataTablesProperties method • 34
ShowProgramFile method • 34
ShowProgramFilesProperties method • 34
SourceSearchPath property • 12
Subrevision property • 49
Symbol property • 147
SymbolGroup property • 147
SymbolGroups property • 132

T
TempReplace property • 112
Tips • 6
Title property • 112
TitlePage property • 132
Type definitions (RSLogix 5 and 500)

lgxErrorTypes • 209
lgxImportDBTypes • 207
lgxKeyPositionConstants • 202
lgxOnlineAction • 202
lgxRungZoneTypes • 206
lgxSaveAction • 206
lgxUpDownloadAction • 207
lgxWindowStateConstants • 207

Type definitions (RSLogix 5) • 199
lgxBinary • 207
lgxChannel • 207
lgxDataFileTypeConstants • 200
lgxPrivilege • 208
lgxPrivilegeType • 208
lgxProcessorTypeConstants • 203
lgxProcOnlineState • 205
lgxProgramFileTypeConstants • 206

Type definitions (RSLogix 500) • 199
lgxDataFileTypeConstants • 201
Index • 223

lgxProcessorTypeConstants • 204
lgxProcOnlineState • 205
lgxProgramFileTypeConstants • 206

Type property • 49, 68, 88, 98
TypeAsString property • 88

U
Upload method • 17
Using this book • 3

V
VBA

advantages • 1
illustration of environment • 2

VBAVersion property • 12
VBE property • 12
Verified property • 112
VerifyProgramFile method • 35
VerifyProject method • 35
Version property • 13
Visible property • 13

W
WindowHandle property • 13
WindowsState property • 13
WritePrivilege property • 68, 88, 98
224 • RSLogix Automation Interface Reference Manual

	RSLogix Automation Interface Reference Manual
	Contents
	Introduction to the automation interface
	What is VBA and what does it do?
	Advantages
	Uses

	Finding your way around this book
	Automating the ladder logic editor
	Automating the documentation database editor

	Supplemental information
	Example files
	How to access VBA in RSLogix 5 and RSLogix 500
	Create your VBA code
	Some quick programming tips

	Application object
	Properties
	Methods
	Events
	Summary example
	Form
	Code

	LogixProject object
	Properties
	Methods
	Events
	Summary example
	Form
	Code

	Processor object
	Properties
	Methods
	Events
	Summary example
	Form
	Code

	ProgramFiles collection
	Properties
	Methods
	Events
	Summary example
	Form

	ProgramFile object
	Properties
	Methods
	Events
	Summary example
	Form
	Code

	DataFiles collection
	Properties
	Methods
	Events
	Summary Example
	Form
	Code

	DataFile object
	Properties
	Methods
	Events
	Summary Example
	Form
	Code

	LadderFile object
	Properties
	Methods
	Events
	Summary example
	Form
	Code

	Rung object
	Properties
	Methods
	Events
	Summary example
	Form
	Code

	RevisionNotes object
	Properties
	Methods
	Events
	Summary example
	Form
	Code

	ReportOptions object
	Properties
	Methods
	Events
	Summary example
	Form
	Code

	AddrSymRecords collection
	Properties
	Methods
	Events

	AddrSymRecord object
	Properties
	Methods
	Events

	RungCmntPageTitleRecords collection
	Properties
	Methods
	Events

	RungCmntPageTitleRecord object
	Properties
	Methods
	Events

	PasswordPrivilegeConfig object
	Properties
	Methods
	Events

	Object model diagrams
	Introduction
	RSLogix 5 object model summary
	RSLogix 500 object model summary
	RSLogix 500 object model summary, database utilities

	Type definitions and constants
	RSLogix 5 and RSLogix 500 type definitions and constants
	lgxDataFileTypeConstants (RSLogix 5)
	lgxDataFileTypeConstants (RSLogix 500)
	lgxKeyPositionConstants (RSLogix 5 and 500)
	lgxOnlineAction (RSLogix 5 and 500)
	lgxProcessorTypeConstants (RSLogix 5)
	lgxProcessorTypeConstants (RSLogix 500)
	lgxProcOnlineState (RSLogix 5)
	lgxProcOnlineState (RSLogix 500)
	lgxProgramFileTypeConstants (RSLogix 5)
	lgxProgramFileTypeConstants (RSLogix 500)
	lgxRungZoneTypes (RSLogix 5 and 500)
	lgxSaveAction (RSLogix 5 and 500)
	lgxUpDownloadAction (RSLogix 5 and 500)
	lgxWindowStateConstants (RSLogix 5 and 500)
	lgxImportDBTypes (RSLogix 5 and 500)
	lgxBinary (RSLogix 5)
	lgxChannel (RSLogix 5)
	lgxPrivilege (RSLogix 5)
	lgxPrivilegeType (RSLogix 5)
	lgxErrorTypes (RSLogix 5 and 500)

	Handling errors
	General differences in the RSLogix 5 and 500 automation interfaces
	PasswordPrivilegeConfig
	DataFile object
	ProgramFile object
	ReportOptions object
	LogixProject object
	Processor object
	Ladder object

	Index

